1 include "logic/equality.ma".
3 (* Inclusion of: COL003-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL003-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Strong fixed point for B and W *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : The strong fixed point property holds for the set *)
17 (* P consisting of the combinators B and W alone, where ((Bx)y)z *)
19 (* = x(yz) and (Wx)y = (xy)y. *)
21 (* Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi *)
23 (* : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem *)
25 (* : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
27 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
29 (* : [Ove90] Overbeek (1990), ATP competition announced at CADE-10 *)
31 (* : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit *)
33 (* : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St *)
35 (* : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal *)
37 (* : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11 *)
39 (* : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in *)
43 (* Names : C2 [WM88] *)
45 (* : Problem 2 [WM88] *)
47 (* : Test Problem 17 [Wos88] *)
49 (* : Sages and Combinatory Logic [Wos88] *)
51 (* : CADE-11 Competition Eq-8 [Ove90] *)
55 (* : THEOREM EQ-8 [LM93] *)
57 (* : Question 3 [Wos93] *)
59 (* : Question 5 [Wos93] *)
61 (* : PROBLEM 8 [Zha93] *)
63 (* Status : Unsatisfiable *)
65 (* Rating : 0.67 v3.4.0, 0.75 v3.3.0, 0.71 v3.2.0, 0.79 v3.1.0, 0.78 v2.7.0, 0.73 v2.6.0, 0.67 v2.5.0, 0.25 v2.4.0, 0.33 v2.3.0, 0.67 v2.2.1, 1.00 v2.0.0 *)
67 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
69 (* Number of atoms : 3 ( 3 equality) *)
71 (* Maximal clause size : 1 ( 1 average) *)
73 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
75 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
77 (* Number of variables : 6 ( 0 singleton) *)
79 (* Maximal term depth : 4 ( 3 average) *)
83 (* -------------------------------------------------------------------------- *)
84 ntheorem prove_strong_fixed_point:
85 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
86 ∀apply:∀_:Univ.∀_:Univ.Univ.
90 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
91 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
103 napply (ex_intro ? ? ? ?) ##[
107 ntry (nassumption) ##;
110 (* -------------------------------------------------------------------------- *)