1 include "logic/equality.ma".
3 (* Inclusion of: COL006-6.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL006-6 : TPTP v3.7.0. Released v2.1.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Strong fixed point for S and K *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* Theorem formulation : The fixed point is provided and checked. *)
17 (* English : The strong fixed point property holds for the set *)
19 (* P consisting of the combinators S and K alone, where *)
21 (* ((Sx)y)z = (xz)(yz), (Kx)y = x. *)
23 (* Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.44 v3.4.0, 0.38 v3.3.0, 0.64 v3.1.0, 0.78 v2.7.0, 0.73 v2.6.0, 0.50 v2.5.0, 0.75 v2.4.0, 0.67 v2.2.1, 0.88 v2.2.0, 0.80 v2.1.0 *)
33 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 2 RR) *)
35 (* Number of atoms : 4 ( 4 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 5 ( 4 constant; 0-2 arity) *)
43 (* Number of variables : 5 ( 1 singleton) *)
45 (* Maximal term depth : 8 ( 3 average) *)
49 (* -------------------------------------------------------------------------- *)
50 ntheorem prove_strong_fixed_point:
51 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
52 ∀apply:∀_:Univ.∀_:Univ.Univ.
56 ∀strong_fixed_point:Univ.
57 ∀H0:eq Univ strong_fixed_point (apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply (apply s (apply k s)) k)) (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))).
58 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
59 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
69 #strong_fixed_point ##.
74 ntry (nassumption) ##;
77 (* -------------------------------------------------------------------------- *)