1 include "logic/equality.ma".
3 (* Inclusion of: COL049-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL049-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Strong fixed point for B, W, and M *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : The strong fixed point property holds for the set *)
17 (* P consisting of the combinators B, W, and M, where ((Bx)y)z *)
19 (* = x(yz), (Wx)y = (xy)y, Mx = xx. *)
21 (* Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi *)
23 (* : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem *)
25 (* : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
27 (* : [Ove90] Overbeek (1990), ATP competition announced at CADE-10 *)
29 (* : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit *)
31 (* : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St *)
33 (* : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal *)
35 (* : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11 *)
37 (* : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in *)
39 (* Source : [Ove90] *)
41 (* Names : Problem 2 [WM88] *)
43 (* : CADE-11 Competition Eq-6 [Ove90] *)
47 (* : THEOREM EQ-6 [LM93] *)
49 (* : Question 2 [Wos93] *)
51 (* : PROBLEM 6 [Zha93] *)
53 (* Status : Unsatisfiable *)
55 (* Rating : 0.22 v3.4.0, 0.25 v3.3.0, 0.29 v3.1.0, 0.44 v2.7.0, 0.27 v2.6.0, 0.17 v2.5.0, 0.25 v2.4.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.14 v2.1.0, 0.62 v2.0.0 *)
57 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 1 RR) *)
59 (* Number of atoms : 4 ( 4 equality) *)
61 (* Maximal clause size : 1 ( 1 average) *)
63 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
65 (* Number of functors : 5 ( 3 constant; 0-2 arity) *)
67 (* Number of variables : 7 ( 0 singleton) *)
69 (* Maximal term depth : 4 ( 3 average) *)
73 (* -------------------------------------------------------------------------- *)
74 ntheorem prove_strong_fixed_point:
75 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
76 ∀apply:∀_:Univ.∀_:Univ.Univ.
81 ∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
82 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
83 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
97 napply (ex_intro ? ? ? ?) ##[
101 ntry (nassumption) ##;
104 (* -------------------------------------------------------------------------- *)