1 include "logic/equality.ma".
3 (* Inclusion of: COL057-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL057-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Strong fixed point for S, B, C, and I *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : The strong fixed point property holds for the set *)
17 (* P consisting of the combinators S, B, C, and I, where *)
19 (* ((Sx)y)z = (xz)(yz), ((Bx)y)z = x(yz), ((Cx)y)z = (xz)y, and *)
23 (* Refs : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit *)
27 (* Names : CL5 [LW92] *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.22 v3.4.0, 0.25 v3.3.0, 0.36 v3.1.0, 0.56 v2.7.0, 0.27 v2.6.0, 0.17 v2.5.0, 0.00 v2.1.0, 0.25 v2.0.0 *)
33 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR) *)
35 (* Number of atoms : 5 ( 5 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 6 ( 4 constant; 0-2 arity) *)
43 (* Number of variables : 11 ( 0 singleton) *)
45 (* Maximal term depth : 4 ( 3 average) *)
49 (* -------------------------------------------------------------------------- *)
50 ntheorem prove_strong_fixed_point:
51 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
52 ∀apply:∀_:Univ.∀_:Univ.Univ.
58 ∀H0:∀X:Univ.eq Univ (apply i X) X.
59 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
60 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
61 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
77 napply (ex_intro ? ? ? ?) ##[
79 nauto by H0,H1,H2,H3 ##;
81 ntry (nassumption) ##;
84 (* -------------------------------------------------------------------------- *)