1 include "logic/equality.ma".
3 (* Inclusion of: COL065-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL065-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Find combinator equivalent to G from B and T *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : Construct from B and T alone a combinator that behaves as the *)
17 (* combinator G does, where ((Bx)y)z = x(yz), (Tx)y = yx, *)
19 (* (((Gx)y)z)w = (xw)(yz) *)
21 (* Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
23 (* : [WW+90] Wos et al. (1990), Automated Reasoning Contributes to *)
25 (* Source : [WW+90] *)
27 (* Names : CL-6 [WW+90] *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.56 v3.4.0, 0.62 v3.3.0, 0.64 v3.2.0, 0.71 v3.1.0, 0.56 v2.7.0, 0.45 v2.6.0, 0.33 v2.5.0, 0.00 v2.4.0, 0.00 v2.2.1, 0.89 v2.2.0, 0.86 v2.1.0, 1.00 v2.0.0 *)
33 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
35 (* Number of atoms : 3 ( 3 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 7 ( 2 constant; 0-2 arity) *)
43 (* Number of variables : 6 ( 0 singleton) *)
45 (* Maximal term depth : 6 ( 4 average) *)
49 (* -------------------------------------------------------------------------- *)
50 ntheorem prove_g_combinator:
51 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
52 ∀apply:∀_:Univ.∀_:Univ.Univ.
59 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
60 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply (apply X (f X)) (g X)) (h X)) (i X)) (apply (apply (f X) (i X)) (apply (g X) (h X))))
75 napply (ex_intro ? ? ? ?) ##[
79 ntry (nassumption) ##;
82 (* -------------------------------------------------------------------------- *)