1 include "logic/equality.ma".
3 (* Inclusion of: GRP014-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP014-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Group Theory *)
11 (* Problem : Product is associative in this group theory *)
13 (* Version : [Ove90] (equality) axioms : Incomplete. *)
15 (* English : The group theory specified by the axiom given implies the *)
17 (* associativity of multiply. *)
19 (* Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10 *)
21 (* : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal *)
23 (* : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11 *)
25 (* : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in *)
27 (* Source : [Ove90] *)
29 (* Names : CADE-11 Competition Eq-4 [Ove90] *)
31 (* : THEOREM EQ-4 [LM93] *)
33 (* : PROBLEM 4 [Zha93] *)
35 (* Status : Unsatisfiable *)
37 (* Rating : 0.22 v3.4.0, 0.25 v3.3.0, 0.07 v3.2.0, 0.14 v3.1.0, 0.11 v2.7.0, 0.18 v2.6.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.43 v2.1.0, 0.50 v2.0.0 *)
39 (* Syntax : Number of clauses : 2 ( 0 non-Horn; 2 unit; 1 RR) *)
41 (* Number of atoms : 2 ( 2 equality) *)
43 (* Maximal clause size : 1 ( 1 average) *)
45 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
47 (* Number of functors : 5 ( 3 constant; 0-2 arity) *)
49 (* Number of variables : 4 ( 0 singleton) *)
51 (* Maximal term depth : 9 ( 4 average) *)
53 (* Comments : The group_axiom is in fact a single axiom for group theory *)
57 (* -------------------------------------------------------------------------- *)
58 ntheorem prove_associativity:
59 (∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
63 ∀inverse:∀_:Univ.Univ.
64 ∀multiply:∀_:Univ.∀_:Univ.Univ.
65 ∀H0:∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (inverse (multiply (multiply (inverse (multiply (inverse Y) (multiply (inverse X) W))) Z) (inverse (multiply Y Z))))) W.eq Univ (multiply a (multiply b c)) (multiply (multiply a b) c))
79 ntry (nassumption) ##;
82 (* -------------------------------------------------------------------------- *)