1 include "logic/equality.ma".
3 (* Inclusion of: GRP024-5.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP024-5 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Group Theory *)
11 (* Problem : Levi commutator problem. *)
13 (* Version : [McC98] (equality) axioms. *)
15 (* English : In group theory, if the commutator [x,y] is associative, *)
17 (* then x*[y,z] = [y,z]*x. *)
19 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
21 (* : [ML92] McCune & Lusk (1992), A Challenging Theorem of Levi *)
23 (* : [Kur56] Kurosh (1956), The Theory of Groups *)
25 (* Source : [McC98] *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.33 v3.4.0, 0.38 v3.3.0, 0.57 v3.2.0, 0.50 v3.1.0, 0.44 v2.7.0, 0.64 v2.6.0, 0.33 v2.5.0, 0.00 v2.4.0, 0.33 v2.3.0, 0.67 v2.2.1 *)
33 (* Syntax : Number of clauses : 6 ( 0 non-Horn; 6 unit; 1 RR) *)
35 (* Number of atoms : 6 ( 6 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 7 ( 4 constant; 0-2 arity) *)
43 (* Number of variables : 10 ( 0 singleton) *)
45 (* Maximal term depth : 4 ( 3 average) *)
49 (* -------------------------------------------------------------------------- *)
51 (* ----Include group theory axioms *)
53 (* Inclusion of: Axioms/GRP004-0.ax *)
55 (* -------------------------------------------------------------------------- *)
57 (* File : GRP004-0 : TPTP v3.7.0. Released v1.0.0. *)
59 (* Domain : Group Theory *)
61 (* Axioms : Group theory (equality) axioms *)
63 (* Version : [MOW76] (equality) axioms : *)
65 (* Reduced > Complete. *)
69 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
71 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
79 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
81 (* Number of atoms : 3 ( 3 equality) *)
83 (* Maximal clause size : 1 ( 1 average) *)
85 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
87 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
89 (* Number of variables : 5 ( 0 singleton) *)
91 (* Maximal term depth : 3 ( 2 average) *)
93 (* Comments : [MOW76] also contains redundant right_identity and *)
95 (* right_inverse axioms. *)
97 (* : These axioms are also used in [Wos88] p.186, also with *)
99 (* right_identity and right_inverse. *)
101 (* -------------------------------------------------------------------------- *)
103 (* ----For any x and y in the group x*y is also in the group. No clause *)
105 (* ----is needed here since this is an instance of reflexivity *)
107 (* ----There exists an identity element *)
109 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
111 (* ----= identity. *)
113 (* ----The operation '*' is associative *)
115 (* -------------------------------------------------------------------------- *)
117 (* -------------------------------------------------------------------------- *)
119 (* ----Definition of commutator: *)
121 (* ----Theorem: commutator is associative implies x*[y,z] = [y,z]*x. *)
123 (* ----Hypothesis: *)
125 (* ----Denial of conclusion: *)
126 ntheorem prove_center:
127 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
131 ∀commutator:∀_:Univ.∀_:Univ.Univ.
133 ∀inverse:∀_:Univ.Univ.
134 ∀multiply:∀_:Univ.∀_:Univ.Univ.
135 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (commutator (commutator X Y) Z) (commutator X (commutator Y Z)).
136 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (commutator X Y) (multiply (inverse X) (multiply (inverse Y) (multiply X Y))).
137 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
138 ∀H3:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
139 ∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a (commutator b c)) (multiply (commutator b c) a))
157 nauto by H0,H1,H2,H3,H4 ##;
158 ntry (nassumption) ##;
161 (* -------------------------------------------------------------------------- *)