1 include "logic/equality.ma".
3 (* Inclusion of: GRP167-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP167-1 : TPTP v3.7.0. Bugfixed v1.2.1. *)
9 (* Domain : Group Theory (Lattice Ordered) *)
11 (* Problem : Product of positive and negative parts *)
13 (* Version : [Fuc94] (equality) axioms. *)
15 (* English : Each element in a lattice ordered group can be stated as a *)
17 (* product of it's positive and it's negative part. *)
19 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
21 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
23 (* : [Dah95] Dahn (1995), Email to G. Sutcliffe *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.22 v3.4.0, 0.25 v3.3.0, 0.21 v3.1.0, 0.11 v2.7.0, 0.18 v2.6.0, 0.17 v2.5.0, 0.00 v2.4.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.43 v2.1.0, 0.86 v2.0.0 *)
33 (* Syntax : Number of clauses : 20 ( 0 non-Horn; 20 unit; 1 RR) *)
35 (* Number of atoms : 20 ( 20 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 8 ( 2 constant; 0-2 arity) *)
43 (* Number of variables : 41 ( 2 singleton) *)
45 (* Maximal term depth : 3 ( 2 average) *)
47 (* Comments : ORDERING LPO inverse > greatest_lower_bound > *)
49 (* least_upper_bound > product > negative_part > positive_part > *)
53 (* : This is a standardized version of the problem that appears in *)
57 (* : [Dah95] says "This is crucial for reducing some problems *)
59 (* on arbitrary elements to problems on positive elements. The *)
61 (* proof is relatively difficult. It is non-obvious to humans *)
63 (* since the standard tactics (unfold definitions - use *)
65 (* distributivity - simplify) is not useful." *)
67 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
69 (* -------------------------------------------------------------------------- *)
71 (* ----Include equality group theory axioms *)
73 (* Inclusion of: Axioms/GRP004-0.ax *)
75 (* -------------------------------------------------------------------------- *)
77 (* File : GRP004-0 : TPTP v3.7.0. Released v1.0.0. *)
79 (* Domain : Group Theory *)
81 (* Axioms : Group theory (equality) axioms *)
83 (* Version : [MOW76] (equality) axioms : *)
85 (* Reduced > Complete. *)
89 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
91 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
99 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
101 (* Number of atoms : 3 ( 3 equality) *)
103 (* Maximal clause size : 1 ( 1 average) *)
105 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
107 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
109 (* Number of variables : 5 ( 0 singleton) *)
111 (* Maximal term depth : 3 ( 2 average) *)
113 (* Comments : [MOW76] also contains redundant right_identity and *)
115 (* right_inverse axioms. *)
117 (* : These axioms are also used in [Wos88] p.186, also with *)
119 (* right_identity and right_inverse. *)
121 (* -------------------------------------------------------------------------- *)
123 (* ----For any x and y in the group x*y is also in the group. No clause *)
125 (* ----is needed here since this is an instance of reflexivity *)
127 (* ----There exists an identity element *)
129 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
131 (* ----= identity. *)
133 (* ----The operation '*' is associative *)
135 (* -------------------------------------------------------------------------- *)
137 (* ----Include Lattice ordered group (equality) axioms *)
139 (* Inclusion of: Axioms/GRP004-2.ax *)
141 (* -------------------------------------------------------------------------- *)
143 (* File : GRP004-2 : TPTP v3.7.0. Bugfixed v1.2.0. *)
145 (* Domain : Group Theory (Lattice Ordered) *)
147 (* Axioms : Lattice ordered group (equality) axioms *)
149 (* Version : [Fuc94] (equality) axioms. *)
153 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
155 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
157 (* Source : [Sch95] *)
163 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
165 (* Number of atoms : 12 ( 12 equality) *)
167 (* Maximal clause size : 1 ( 1 average) *)
169 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
171 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
173 (* Number of variables : 28 ( 2 singleton) *)
175 (* Maximal term depth : 3 ( 2 average) *)
177 (* Comments : Requires GRP004-0.ax *)
179 (* -------------------------------------------------------------------------- *)
181 (* ----Specification of the least upper bound and greatest lower bound *)
183 (* ----Monotony of multiply *)
185 (* -------------------------------------------------------------------------- *)
187 (* -------------------------------------------------------------------------- *)
189 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
191 ∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
193 ∀inverse:∀_:Univ.Univ.
194 ∀least_upper_bound:∀_:Univ.∀_:Univ.Univ.
195 ∀multiply:∀_:Univ.∀_:Univ.Univ.
196 ∀negative_part:∀_:Univ.Univ.
197 ∀positive_part:∀_:Univ.Univ.
198 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (greatest_lower_bound X (least_upper_bound Y Z)) (least_upper_bound (greatest_lower_bound X Y) (greatest_lower_bound X Z)).
199 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (least_upper_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (least_upper_bound X Y) (least_upper_bound X Z)).
200 ∀H2:∀X:Univ.eq Univ (negative_part X) (greatest_lower_bound X identity).
201 ∀H3:∀X:Univ.eq Univ (positive_part X) (least_upper_bound X identity).
202 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
203 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
204 ∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
205 ∀H7:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
206 ∀H8:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
207 ∀H9:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
208 ∀H10:∀X:Univ.eq Univ (greatest_lower_bound X X) X.
209 ∀H11:∀X:Univ.eq Univ (least_upper_bound X X) X.
210 ∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
211 ∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
212 ∀H14:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
213 ∀H15:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
214 ∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
215 ∀H17:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
216 ∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (positive_part a) (negative_part a)))
223 #greatest_lower_bound ##.
226 #least_upper_bound ##.
249 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18 ##;
250 ntry (nassumption) ##;
253 (* -------------------------------------------------------------------------- *)