1 include "logic/equality.ma".
3 (* Inclusion of: GRP181-4.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP181-4 : TPTP v3.7.0. Bugfixed v1.2.1. *)
9 (* Domain : Group Theory (Lattice Ordered) *)
11 (* Problem : Distributivity of a lattice *)
13 (* Version : [Fuc94] (equality) axioms : Augmented. *)
17 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
19 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
21 (* Source : [Sch95] *)
23 (* Names : p12x [Sch95] *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.33 v3.4.0, 0.25 v3.3.0, 0.43 v3.1.0, 0.44 v2.7.0, 0.36 v2.6.0, 0.00 v2.2.1, 0.56 v2.2.0, 0.57 v2.1.0, 1.00 v2.0.0 *)
29 (* Syntax : Number of clauses : 23 ( 0 non-Horn; 23 unit; 4 RR) *)
31 (* Number of atoms : 23 ( 23 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 8 ( 4 constant; 0-2 arity) *)
39 (* Number of variables : 40 ( 2 singleton) *)
41 (* Maximal term depth : 3 ( 2 average) *)
43 (* Comments : ORDERING LPO inverse > product > greatest_lower_bound > *)
45 (* least_upper_bound > identity > a > b > c *)
47 (* : ORDERING LPO greatest_lower_bound > least_upper_bound > *)
49 (* inverse > product > identity > a > b > c *)
51 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
53 (* -------------------------------------------------------------------------- *)
55 (* ----Include equality group theory axioms *)
57 (* Inclusion of: Axioms/GRP004-0.ax *)
59 (* -------------------------------------------------------------------------- *)
61 (* File : GRP004-0 : TPTP v3.7.0. Released v1.0.0. *)
63 (* Domain : Group Theory *)
65 (* Axioms : Group theory (equality) axioms *)
67 (* Version : [MOW76] (equality) axioms : *)
69 (* Reduced > Complete. *)
73 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
75 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
83 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
85 (* Number of atoms : 3 ( 3 equality) *)
87 (* Maximal clause size : 1 ( 1 average) *)
89 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
91 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
93 (* Number of variables : 5 ( 0 singleton) *)
95 (* Maximal term depth : 3 ( 2 average) *)
97 (* Comments : [MOW76] also contains redundant right_identity and *)
99 (* right_inverse axioms. *)
101 (* : These axioms are also used in [Wos88] p.186, also with *)
103 (* right_identity and right_inverse. *)
105 (* -------------------------------------------------------------------------- *)
107 (* ----For any x and y in the group x*y is also in the group. No clause *)
109 (* ----is needed here since this is an instance of reflexivity *)
111 (* ----There exists an identity element *)
113 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
115 (* ----= identity. *)
117 (* ----The operation '*' is associative *)
119 (* -------------------------------------------------------------------------- *)
121 (* ----Include Lattice ordered group (equality) axioms *)
123 (* Inclusion of: Axioms/GRP004-2.ax *)
125 (* -------------------------------------------------------------------------- *)
127 (* File : GRP004-2 : TPTP v3.7.0. Bugfixed v1.2.0. *)
129 (* Domain : Group Theory (Lattice Ordered) *)
131 (* Axioms : Lattice ordered group (equality) axioms *)
133 (* Version : [Fuc94] (equality) axioms. *)
137 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
139 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
141 (* Source : [Sch95] *)
147 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
149 (* Number of atoms : 12 ( 12 equality) *)
151 (* Maximal clause size : 1 ( 1 average) *)
153 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
155 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
157 (* Number of variables : 28 ( 2 singleton) *)
159 (* Maximal term depth : 3 ( 2 average) *)
161 (* Comments : Requires GRP004-0.ax *)
163 (* -------------------------------------------------------------------------- *)
165 (* ----Specification of the least upper bound and greatest lower bound *)
167 (* ----Monotony of multiply *)
169 (* -------------------------------------------------------------------------- *)
171 (* -------------------------------------------------------------------------- *)
173 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
177 ∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
179 ∀inverse:∀_:Univ.Univ.
180 ∀least_upper_bound:∀_:Univ.∀_:Univ.Univ.
181 ∀multiply:∀_:Univ.∀_:Univ.Univ.
182 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (inverse (least_upper_bound X Y)) (greatest_lower_bound (inverse X) (inverse Y)).
183 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (inverse (greatest_lower_bound X Y)) (least_upper_bound (inverse X) (inverse Y)).
184 ∀H2:eq Univ (least_upper_bound a c) (least_upper_bound b c).
185 ∀H3:eq Univ (greatest_lower_bound a c) (greatest_lower_bound b c).
186 ∀H4:∀X:Univ.∀Y:Univ.eq Univ (inverse (multiply X Y)) (multiply (inverse Y) (inverse X)).
187 ∀H5:∀X:Univ.eq Univ (inverse (inverse X)) X.
188 ∀H6:eq Univ (inverse identity) identity.
189 ∀H7:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
190 ∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
191 ∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
192 ∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
193 ∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
194 ∀H12:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
195 ∀H13:∀X:Univ.eq Univ (greatest_lower_bound X X) X.
196 ∀H14:∀X:Univ.eq Univ (least_upper_bound X X) X.
197 ∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
198 ∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
199 ∀H17:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
200 ∀H18:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
201 ∀H19:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
202 ∀H20:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
203 ∀H21:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b)
212 #greatest_lower_bound ##.
215 #least_upper_bound ##.
239 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
240 ntry (nassumption) ##;
243 (* -------------------------------------------------------------------------- *)