1 include "logic/equality.ma".
3 (* Inclusion of: GRP202-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP202-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Group Theory (Loops) *)
11 (* Problem : In Loops, Moufang-3 => Moufang-1. *)
13 (* Version : [MP96] (equality) axioms. *)
17 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
19 (* : [Wos96] Wos (1996), OTTER and the Moufang Identity Problem *)
21 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
23 (* Source : [McC98] *)
25 (* Names : MFL-3 [MP96] *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.22 v3.4.0, 0.38 v3.3.0, 0.43 v3.1.0, 0.44 v2.7.0, 0.36 v2.6.0, 0.00 v2.2.1 *)
33 (* Syntax : Number of clauses : 10 ( 0 non-Horn; 10 unit; 1 RR) *)
35 (* Number of atoms : 10 ( 10 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 9 ( 4 constant; 0-2 arity) *)
43 (* Number of variables : 15 ( 0 singleton) *)
45 (* Maximal term depth : 4 ( 2 average) *)
49 (* -------------------------------------------------------------------------- *)
51 (* ----Loop axioms: *)
55 (* ----Denial of Moufang-1 *)
56 ntheorem prove_moufang1:
57 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
62 ∀left_division:∀_:Univ.∀_:Univ.Univ.
63 ∀left_inverse:∀_:Univ.Univ.
64 ∀multiply:∀_:Univ.∀_:Univ.Univ.
65 ∀right_division:∀_:Univ.∀_:Univ.Univ.
66 ∀right_inverse:∀_:Univ.Univ.
67 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply (multiply X Y) X) Z) (multiply X (multiply Y (multiply X Z))).
68 ∀H1:∀X:Univ.eq Univ (multiply (left_inverse X) X) identity.
69 ∀H2:∀X:Univ.eq Univ (multiply X (right_inverse X)) identity.
70 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (right_division (multiply X Y) Y) X.
71 ∀H4:∀X:Univ.∀Y:Univ.eq Univ (multiply (right_division X Y) Y) X.
72 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (left_division X (multiply X Y)) Y.
73 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X (left_division X Y)) Y.
74 ∀H7:∀X:Univ.eq Univ (multiply X identity) X.
75 ∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply a (multiply b c)) a) (multiply (multiply a b) (multiply c a)))
99 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
100 ntry (nassumption) ##;
103 (* -------------------------------------------------------------------------- *)