1 include "logic/equality.ma".
3 (* Inclusion of: GRP422-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP422-1 : TPTP v3.7.0. Released v2.6.0. *)
9 (* Domain : Group Theory *)
11 (* Problem : Axiom for group theory, in product & inverse, part 2 *)
13 (* Version : [McC93] (equality) axioms. *)
17 (* Refs : [Kun92] Kunen (1992), Single Axioms for Groups *)
19 (* : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.22 v3.4.0, 0.25 v3.3.0, 0.29 v3.1.0, 0.44 v2.7.0, 0.27 v2.6.0 *)
29 (* Syntax : Number of clauses : 2 ( 0 non-Horn; 2 unit; 1 RR) *)
31 (* Number of atoms : 2 ( 2 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
39 (* Number of variables : 3 ( 0 singleton) *)
41 (* Maximal term depth : 11 ( 4 average) *)
43 (* Comments : A UEQ part of GRP055-1 *)
45 (* -------------------------------------------------------------------------- *)
46 ntheorem prove_these_axioms_2:
47 (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
50 ∀inverse:∀_:Univ.Univ.
51 ∀multiply:∀_:Univ.∀_:Univ.Univ.
52 ∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (multiply (inverse C) (inverse (multiply (inverse C) C))))))) (multiply A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
64 ntry (nassumption) ##;
67 (* -------------------------------------------------------------------------- *)