1 include "logic/equality.ma".
3 (* Inclusion of: ROB006-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : ROB006-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Robbins Algebra *)
11 (* Problem : Exists absorbed element => Boolean *)
13 (* Version : [Win90] (equality) axioms. *)
15 (* Theorem formulation : Denies Huntington's axiom. *)
17 (* English : If there are elements c and d such that c+d=d, then the *)
19 (* algebra is Boolean. *)
21 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
23 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
25 (* : [Wos92] Wos (1992), An Opportunity to Test Your Skills, and th *)
27 (* : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit *)
29 (* Source : [Wos92] *)
31 (* Names : Theorem 1.1 [Win90] *)
35 (* Status : Unsatisfiable *)
37 (* Rating : 0.78 v3.4.0, 0.88 v3.3.0, 0.86 v3.1.0, 0.89 v2.7.0, 0.91 v2.6.0, 0.83 v2.5.0, 0.75 v2.4.0, 0.67 v2.3.0, 1.00 v2.0.0 *)
39 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 2 RR) *)
41 (* Number of atoms : 5 ( 5 equality) *)
43 (* Maximal clause size : 1 ( 1 average) *)
45 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
47 (* Number of functors : 6 ( 4 constant; 0-2 arity) *)
49 (* Number of variables : 7 ( 0 singleton) *)
51 (* Maximal term depth : 6 ( 3 average) *)
53 (* Comments : Commutativity, associativity, and Huntington's axiom *)
55 (* axiomatize Boolean algebra. *)
57 (* -------------------------------------------------------------------------- *)
59 (* ----Include axioms for Robbins algebra *)
61 (* Inclusion of: Axioms/ROB001-0.ax *)
63 (* -------------------------------------------------------------------------- *)
65 (* File : ROB001-0 : TPTP v3.7.0. Released v1.0.0. *)
67 (* Domain : Robbins algebra *)
69 (* Axioms : Robbins algebra axioms *)
71 (* Version : [Win90] (equality) axioms. *)
75 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
77 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
79 (* Source : [OTTER] *)
81 (* Names : Lemma 2.2 [Win90] *)
85 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
87 (* Number of atoms : 3 ( 3 equality) *)
89 (* Maximal clause size : 1 ( 1 average) *)
91 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
93 (* Number of functors : 2 ( 0 constant; 1-2 arity) *)
95 (* Number of variables : 7 ( 0 singleton) *)
97 (* Maximal term depth : 6 ( 3 average) *)
101 (* -------------------------------------------------------------------------- *)
103 (* -------------------------------------------------------------------------- *)
105 (* -------------------------------------------------------------------------- *)
106 ntheorem prove_huntingtons_axiom:
107 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
109 ∀add:∀_:Univ.∀_:Univ.Univ.
113 ∀negate:∀_:Univ.Univ.
114 ∀H0:eq Univ (add c d) d.
115 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
116 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
117 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
133 nauto by H0,H1,H2,H3 ##;
134 ntry (nassumption) ##;
137 (* -------------------------------------------------------------------------- *)