1 include "logic/equality.ma".
3 (* Inclusion of: LCL139-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LCL139-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Logic Calculi (Wajsberg Algebra) *)
11 (* Problem : A lemma in Wajsberg algebras *)
13 (* Version : [Bon91] (equality) axioms. *)
17 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
19 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
21 (* Source : [Bon91] *)
23 (* Names : Lemma 8 [Bon91] *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.25 v2.0.0 *)
29 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR) *)
31 (* Number of atoms : 5 ( 5 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
39 (* Number of variables : 8 ( 0 singleton) *)
41 (* Maximal term depth : 4 ( 2 average) *)
45 (* -------------------------------------------------------------------------- *)
47 (* ----Include Wajsberg algebra axioms *)
49 (* Inclusion of: Axioms/LCL001-0.ax *)
51 (* -------------------------------------------------------------------------- *)
53 (* File : LCL001-0 : TPTP v3.7.0. Released v1.0.0. *)
55 (* Domain : Logic Calculi (Wajsberg Algebras) *)
57 (* Axioms : Wajsberg algebra axioms *)
59 (* Version : [Bon91] (equality) axioms. *)
63 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
65 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
67 (* : [MW92] McCune & Wos (1992), Experiments in Automated Deductio *)
71 (* Names : MV Sentential Calculus [MW92] *)
75 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 0 RR) *)
77 (* Number of atoms : 4 ( 4 equality) *)
79 (* Maximal clause size : 1 ( 1 average) *)
81 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
83 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
85 (* Number of variables : 8 ( 0 singleton) *)
87 (* Maximal term depth : 4 ( 2 average) *)
91 (* -------------------------------------------------------------------------- *)
93 (* -------------------------------------------------------------------------- *)
95 (* -------------------------------------------------------------------------- *)
96 ntheorem prove_wajsberg_lemma:
97 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
98 ∀implies:∀_:Univ.∀_:Univ.Univ.
102 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
103 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
104 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
105 ∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (not truth)) (not x))
119 nauto by H0,H1,H2,H3 ##;
120 ntry (nassumption) ##;
123 (* -------------------------------------------------------------------------- *)