]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/procedural/CoRN/algebra/COrdCauchy.mma
commit completed: one file was missing :(
[helm.git] / matita / matita / contribs / procedural / CoRN / algebra / COrdCauchy.mma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 include "CoRN.ma".
18
19 include "algebra/COrdAbs.ma".
20
21 (* Begin_SpecReals *)
22
23 (* UNEXPORTED
24 Section OrdField_Cauchy
25 *)
26
27 (*#* **Cauchy sequences
28 %\begin{convention}% Let [R] be an ordered field.
29 %\end{convention}%
30 *)
31
32 (* UNEXPORTED
33 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/R.var
34 *)
35
36 (* begin hide *)
37
38 (* UNEXPORTED
39 Set Implicit Arguments.
40 *)
41
42 (* UNEXPORTED
43 Unset Strict Implicit.
44 *)
45
46 (* end hide *)
47
48 inline procedural "cic:/CoRN/algebra/COrdCauchy/Cauchy_prop.con" as definition.
49
50 (* begin hide *)
51
52 (* UNEXPORTED
53 Set Strict Implicit.
54 *)
55
56 (* UNEXPORTED
57 Unset Implicit Arguments.
58 *)
59
60 (* end hide *)
61
62 (* Def. CauchyP, Build_CauchyP *)
63
64 (* Should be defined in terms of CauchyP *)
65
66 (*#*
67 Implicit arguments turned off, because Coq makes a mess of it in combination
68 with the coercions
69 *)
70
71 inline procedural "cic:/CoRN/algebra/COrdCauchy/CauchySeq.ind".
72
73 (* COERCION
74 cic:/matita/CoRN-Procedural/algebra/COrdCauchy/CS_seq.con
75 *)
76
77 inline procedural "cic:/CoRN/algebra/COrdCauchy/SeqLimit.con" as definition.
78
79 (* End_SpecReals *)
80
81 (*#*
82 We now prove that the property of being a Cauchy sequence is preserved
83 through the usual algebraic operations (addition, subtraction and
84 multiplication -- and division, provided some additional conditions
85 hold).
86
87 %\begin{convention}% Let [R] be an ordered field.
88 %\end{convention}%
89 *)
90
91 inline procedural "cic:/CoRN/algebra/COrdCauchy/CS_seq_bounded.con" as theorem.
92
93 inline procedural "cic:/CoRN/algebra/COrdCauchy/CS_seq_const.con" as lemma.
94
95 (*#*
96 %\begin{convention}% Assume [f] and [g] are Cauchy sequences on [R].
97 %\end{convention}%
98 *)
99
100 (* UNEXPORTED
101 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/f.var
102 *)
103
104 (* UNEXPORTED
105 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/g.var
106 *)
107
108 (* UNEXPORTED
109 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/Hf.var
110 *)
111
112 (* UNEXPORTED
113 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/Hg.var
114 *)
115
116 inline procedural "cic:/CoRN/algebra/COrdCauchy/CS_seq_plus.con" as lemma.
117
118 inline procedural "cic:/CoRN/algebra/COrdCauchy/CS_seq_inv.con" as lemma.
119
120 inline procedural "cic:/CoRN/algebra/COrdCauchy/CS_seq_mult.con" as lemma.
121
122 (*#*
123 We now assume that [f] is, from some point onwards, greater than
124 some positive number.  The sequence of reciprocals is defined as
125 being constantly one up to that point, and the sequence of
126 reciprocals from then onwards.
127
128 %\begin{convention}%
129 Let [e] be a postive element of [R] and let [N:nat] be such that from
130 [N] onwards, [(f n) [#] Zero]
131 %\end{convention}%
132 *)
133
134 (* UNEXPORTED
135 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/e.var
136 *)
137
138 (* UNEXPORTED
139 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/He.var
140 *)
141
142 (* UNEXPORTED
143 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/N.var
144 *)
145
146 (* UNEXPORTED
147 cic:/CoRN/algebra/COrdCauchy/OrdField_Cauchy/f_bnd.var
148 *)
149
150 inline procedural "cic:/CoRN/algebra/COrdCauchy/CS_seq_recip_def.con" as lemma.
151
152 inline procedural "cic:/CoRN/algebra/COrdCauchy/CS_seq_recip_seq.con" as definition.
153
154 inline procedural "cic:/CoRN/algebra/COrdCauchy/CS_seq_recip.con" as lemma.
155
156 (* UNEXPORTED
157 End OrdField_Cauchy
158 *)
159
160 (* UNEXPORTED
161 Implicit Arguments SeqLimit [R].
162 *)
163
164 (*#*
165 The following lemma does not require the sequence to be Cauchy, but it fits
166 well here anyway.
167 *)
168
169 inline procedural "cic:/CoRN/algebra/COrdCauchy/maj_upto_eps.con" as lemma.
170
171 (* UNEXPORTED
172 Section Mult_AbsSmall
173 *)
174
175 (* UNEXPORTED
176 cic:/CoRN/algebra/COrdCauchy/Mult_AbsSmall/R.var
177 *)
178
179 (*#*
180 ** [AbsSmall] revisited
181 %\begin{convention}% Let [R] be an ordered field.
182 %\end{convention}%
183 *)
184
185 inline procedural "cic:/CoRN/algebra/COrdCauchy/mult_AbsSmall'_rht.con" as lemma.
186
187 inline procedural "cic:/CoRN/algebra/COrdCauchy/mult_AbsSmall_rht.con" as lemma.
188
189 inline procedural "cic:/CoRN/algebra/COrdCauchy/mult_AbsSmall_lft.con" as lemma.
190
191 inline procedural "cic:/CoRN/algebra/COrdCauchy/mult_AbsSmall.con" as lemma.
192
193 (* UNEXPORTED
194 End Mult_AbsSmall
195 *)
196
197 (* UNEXPORTED
198 Section Mult_Continuous
199 *)
200
201 (* UNEXPORTED
202 cic:/CoRN/algebra/COrdCauchy/Mult_Continuous/R.var
203 *)
204
205 (*#*
206 ** Multiplication is continuous
207 %\begin{convention}% Let [R] be an ordered field.
208 %\end{convention}%
209 *)
210
211 inline procedural "cic:/CoRN/algebra/COrdCauchy/smaller.con" as lemma.
212
213 inline procedural "cic:/CoRN/algebra/COrdCauchy/estimate_abs.con" as lemma.
214
215 inline procedural "cic:/CoRN/algebra/COrdCauchy/mult_contin.con" as lemma.
216
217 (*#* Addition is also continuous. *)
218
219 inline procedural "cic:/CoRN/algebra/COrdCauchy/plus_contin.con" as lemma.
220
221 (* UNEXPORTED
222 End Mult_Continuous
223 *)
224
225 (* UNEXPORTED
226 Section Monotonous_functions
227 *)
228
229 (*#*
230 ** Monotonous Functions
231
232 Finally, we study several properties of monotonous functions and
233 characterize them in some way.
234
235 %\begin{convention}% Let [R] be an ordered field.
236 %\end{convention}%
237 *)
238
239 (* UNEXPORTED
240 cic:/CoRN/algebra/COrdCauchy/Monotonous_functions/R.var
241 *)
242
243 (*#*
244 We begin by characterizing the preservation of less (less or equal)
245 in terms of preservation of less or equal (less).
246 *)
247
248 inline procedural "cic:/CoRN/algebra/COrdCauchy/resp_less_char'.con" as lemma.
249
250 inline procedural "cic:/CoRN/algebra/COrdCauchy/resp_less_char.con" as lemma.
251
252 inline procedural "cic:/CoRN/algebra/COrdCauchy/resp_leEq_char'.con" as lemma.
253
254 inline procedural "cic:/CoRN/algebra/COrdCauchy/resp_leEq_char.con" as lemma.
255
256 (*#*
257 Next, we see different characterizations of monotonous functions from
258 some subset of the natural numbers into [R].  Mainly, these
259 amount (for different types of functions) to proving that a function
260 is monotonous iff [f(i) [<] f(i+1)] for every [i].
261
262 Also, strictly monotonous functions are injective.
263 *)
264
265 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon_imp_mon.con" as lemma.
266
267 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon_imp_mon'.con" as lemma.
268
269 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon'_imp_mon'.con" as lemma.
270
271 inline procedural "cic:/CoRN/algebra/COrdCauchy/mon_imp_mon'.con" as lemma.
272
273 inline procedural "cic:/CoRN/algebra/COrdCauchy/mon_imp_inj.con" as lemma.
274
275 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon_imp_mon_lt.con" as lemma.
276
277 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon_imp_mon'_lt.con" as lemma.
278
279 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon'_imp_mon'_lt.con" as lemma.
280
281 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon'_imp_mon'2_lt.con" as lemma.
282
283 inline procedural "cic:/CoRN/algebra/COrdCauchy/mon_imp_mon'_lt.con" as lemma.
284
285 inline procedural "cic:/CoRN/algebra/COrdCauchy/mon_imp_inj_lt.con" as lemma.
286
287 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon_imp_mon_le.con" as lemma.
288
289 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon_imp_mon'_le.con" as lemma.
290
291 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon'_imp_mon'_le.con" as lemma.
292
293 inline procedural "cic:/CoRN/algebra/COrdCauchy/local_mon'_imp_mon'2_le.con" as lemma.
294
295 inline procedural "cic:/CoRN/algebra/COrdCauchy/mon_imp_mon'_le.con" as lemma.
296
297 inline procedural "cic:/CoRN/algebra/COrdCauchy/mon_imp_inj_le.con" as lemma.
298
299 (*#*
300 A similar result for %{\em %partial%}% functions.
301 *)
302
303 inline procedural "cic:/CoRN/algebra/COrdCauchy/part_mon_imp_mon'.con" as lemma.
304
305 (* UNEXPORTED
306 End Monotonous_functions
307 *)
308