1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
19 (* $Id: FTAreg.v,v 1.4 2004/04/23 10:00:57 lcf Exp $ *)
21 include "fta/KneserLemma.ma".
23 include "fta/CPoly_Shift.ma".
25 include "fta/CPoly_Contin1.ma".
27 (*#* * FTA for regular polynomials
28 ** The Kneser sequence
29 %\begin{convention}% Let [n] be a positive natural number.
38 cic:/CoRN/fta/FTAreg/Seq_Exists/n.var
42 cic:/CoRN/fta/FTAreg/Seq_Exists/lt0n.var
46 %\begin{convention}% Let [qK] be a real between 0 and 1, with
48 forall (p : CCX), (monic n p) -> forall (c : IR), ((AbsCC (p!Zero)) [<] c) ->
49 {z:CC | ((AbsCC z) [^]n [<] c) | ((AbsCC (p!z)) [<] qK[*]c)}.
51 Let [p] be a monic polynomial over the complex numbers with degree
52 [n], and let [c0] be such that [(AbsCC (p!Zero)) [<] c0].
57 Section Kneser_Sequence
61 cic:/CoRN/fta/FTAreg/Seq_Exists/Kneser_Sequence/qK.var
65 cic:/CoRN/fta/FTAreg/Seq_Exists/Kneser_Sequence/zltq.var
69 cic:/CoRN/fta/FTAreg/Seq_Exists/Kneser_Sequence/qlt1.var
73 cic:/CoRN/fta/FTAreg/Seq_Exists/Kneser_Sequence/q_prop.var
77 cic:/CoRN/fta/FTAreg/Seq_Exists/Kneser_Sequence/p.var
81 cic:/CoRN/fta/FTAreg/Seq_Exists/Kneser_Sequence/mp.var
85 cic:/CoRN/fta/FTAreg/Seq_Exists/Kneser_Sequence/c0.var
89 cic:/CoRN/fta/FTAreg/Seq_Exists/Kneser_Sequence/p0ltc0.var
92 inline procedural "cic:/CoRN/fta/FTAreg/Knes_tup.ind".
95 cic:/matita/CoRN-Procedural/fta/FTAreg/z_el.con
98 inline procedural "cic:/CoRN/fta/FTAreg/Knes_tupp.ind".
101 cic:/matita/CoRN-Procedural/fta/FTAreg/Kntup.con
104 inline procedural "cic:/CoRN/fta/FTAreg/Knes_fun.con" as definition.
106 inline procedural "cic:/CoRN/fta/FTAreg/Knes_fun_it.con" as definition.
108 inline procedural "cic:/CoRN/fta/FTAreg/sK.con" as definition.
110 inline procedural "cic:/CoRN/fta/FTAreg/sK_c.con" as lemma.
112 inline procedural "cic:/CoRN/fta/FTAreg/sK_c0.con" as lemma.
114 inline procedural "cic:/CoRN/fta/FTAreg/sK_prop1.con" as lemma.
116 inline procedural "cic:/CoRN/fta/FTAreg/sK_it.con" as lemma.
118 inline procedural "cic:/CoRN/fta/FTAreg/sK_prop2.con" as lemma.
125 Section Seq_Exists_Main
131 inline procedural "cic:/CoRN/fta/FTAreg/seq_exists.con" as lemma.
146 cic:/CoRN/fta/FTAreg/N_Exists/n.var
150 cic:/CoRN/fta/FTAreg/N_Exists/lt0n.var
154 cic:/CoRN/fta/FTAreg/N_Exists/q.var
158 cic:/CoRN/fta/FTAreg/N_Exists/zleq.var
162 cic:/CoRN/fta/FTAreg/N_Exists/qlt1.var
166 cic:/CoRN/fta/FTAreg/N_Exists/c.var
170 cic:/CoRN/fta/FTAreg/N_Exists/zltc.var
175 inline procedural "cic:/CoRN/fta/FTAreg/N_Exists/q_.con" "N_Exists__" as definition.
180 cic:/CoRN/fta/FTAreg/N_Exists/e.var
184 cic:/CoRN/fta/FTAreg/N_Exists/zlte.var
187 inline procedural "cic:/CoRN/fta/FTAreg/N_exists.con" as lemma.
194 Section Seq_is_CC_CAuchy
197 (*#* ** The Kneser sequence is Cauchy in [CC] *)
200 cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/n.var
204 cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/lt0n.var
208 cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/q.var
212 cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/zleq.var
216 cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/qlt1.var
220 cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/c.var
224 cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/zltc.var
227 (*#* %\begin{convention}% Let:
228 - [q_] prove [q[-]One [#] Zero]
229 - [nrtq := NRoot q n]
230 - [nrtc := Nroot c n]
231 - [nrtqlt1] prove [nrtq [<] One]
232 - [nrtq_] prove [nrtq[-]One [#] Zero]
234 %\end{convention}% *)
238 inline procedural "cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/q_.con" "Seq_is_CC_CAuchy__" as definition.
240 inline procedural "cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/nrtq.con" "Seq_is_CC_CAuchy__" as definition.
242 inline procedural "cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/nrtc.con" "Seq_is_CC_CAuchy__" as definition.
244 inline procedural "cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/nrtqlt1.con" "Seq_is_CC_CAuchy__" as definition.
246 inline procedural "cic:/CoRN/fta/FTAreg/Seq_is_CC_CAuchy/nrtq_.con" "Seq_is_CC_CAuchy__" as definition.
250 inline procedural "cic:/CoRN/fta/FTAreg/zlt_nrtq.con" as lemma.
252 inline procedural "cic:/CoRN/fta/FTAreg/zlt_nrtc.con" as lemma.
254 inline procedural "cic:/CoRN/fta/FTAreg/nrt_pow.con" as lemma.
256 inline procedural "cic:/CoRN/fta/FTAreg/abs_pow_ltRe.con" as lemma.
258 inline procedural "cic:/CoRN/fta/FTAreg/abs_pow_ltIm.con" as lemma.
260 inline procedural "cic:/CoRN/fta/FTAreg/SublemmaRe.con" as lemma.
262 inline procedural "cic:/CoRN/fta/FTAreg/SublemmaIm.con" as lemma.
264 inline procedural "cic:/CoRN/fta/FTAreg/seq_is_CC_Cauchy.con" as lemma.
270 inline procedural "cic:/CoRN/fta/FTAreg/FTA_monic.con" as lemma.
272 inline procedural "cic:/CoRN/fta/FTAreg/FTA_reg.con" as lemma.