1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
19 (*#***********************************************************************)
21 (* v * The Coq Proof Assistant / The Coq Development Team *)
23 (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
25 (* \VV/ **************************************************************)
27 (* // * This file is distributed under the terms of the *)
29 (* * GNU Lesser General Public License Version 2.1 *)
31 (*#***********************************************************************)
33 (*i $Id: ArithProp.v,v 1.11.2.1 2004/07/16 19:31:10 herbelin Exp $ i*)
35 include "Reals/Rbase.ma".
37 include "Reals/Rbasic_fun.ma".
39 include "Arith/Even.ma".
41 include "Arith/Div2.ma".
44 Open Local Scope Z_scope.
48 Open Local Scope R_scope.
51 inline procedural "cic:/Coq/Reals/ArithProp/minus_neq_O.con" as lemma.
53 inline procedural "cic:/Coq/Reals/ArithProp/le_minusni_n.con" as lemma.
55 inline procedural "cic:/Coq/Reals/ArithProp/lt_minus_O_lt.con" as lemma.
57 inline procedural "cic:/Coq/Reals/ArithProp/even_odd_cor.con" as lemma.
59 (* 2m <= 2n => m<=n *)
61 inline procedural "cic:/Coq/Reals/ArithProp/le_double.con" as lemma.
63 (* Here, we have the euclidian division *)
65 (* This lemma is used in the proof of sin_eq_0 : (sin x)=0<->x=kPI *)
67 inline procedural "cic:/Coq/Reals/ArithProp/euclidian_division.con" as lemma.
69 inline procedural "cic:/Coq/Reals/ArithProp/tech8.con" as lemma.