1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
19 (*#***********************************************************************)
21 (* v * The Coq Proof Assistant / The Coq Development Team *)
23 (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
25 (* \VV/ **************************************************************)
27 (* // * This file is distributed under the terms of the *)
29 (* * GNU Lesser General Public License Version 2.1 *)
31 (*#***********************************************************************)
33 (*i $Id: NewtonInt.v,v 1.11.2.1 2004/07/16 19:31:10 herbelin Exp $ i*)
35 include "Reals/Rbase.ma".
37 include "Reals/Rfunctions.ma".
39 include "Reals/SeqSeries.ma".
41 include "Reals/Rtrigo.ma".
43 include "Reals/Ranalysis.ma".
46 Open Local Scope R_scope.
49 (*#******************************************)
51 (* Newton's Integral *)
53 (*#******************************************)
55 inline procedural "cic:/Coq/Reals/NewtonInt/Newton_integrable.con" as definition.
57 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt.con" as definition.
59 (* If f is differentiable, then f' is Newton integrable (Tautology ?) *)
61 inline procedural "cic:/Coq/Reals/NewtonInt/FTCN_step1.con" as lemma.
63 (* By definition, we have the Fondamental Theorem of Calculus *)
65 inline procedural "cic:/Coq/Reals/NewtonInt/FTC_Newton.con" as lemma.
67 (* $\int_a^a f$ exists forall a:R and f:R->R *)
69 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P1.con" as lemma.
71 (* $\int_a^a f = 0$ *)
73 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P2.con" as lemma.
75 (* If $\int_a^b f$ exists, then $\int_b^a f$ exists too *)
77 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P3.con" as lemma.
79 (* $\int_a^b f = -\int_b^a f$ *)
81 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P4.con" as lemma.
83 (* The set of Newton integrable functions is a vectorial space *)
85 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P5.con" as lemma.
89 inline procedural "cic:/Coq/Reals/NewtonInt/antiderivative_P1.con" as lemma.
91 (* $\int_a^b \lambda f + g = \lambda \int_a^b f + \int_a^b f *)
93 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P6.con" as lemma.
95 inline procedural "cic:/Coq/Reals/NewtonInt/antiderivative_P2.con" as lemma.
97 inline procedural "cic:/Coq/Reals/NewtonInt/antiderivative_P3.con" as lemma.
99 inline procedural "cic:/Coq/Reals/NewtonInt/antiderivative_P4.con" as lemma.
101 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P7.con" as lemma.
103 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P8.con" as lemma.
105 (* Chasles' relation *)
107 inline procedural "cic:/Coq/Reals/NewtonInt/NewtonInt_P9.con" as lemma.