1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
19 (*#***********************************************************************)
21 (* v * The Coq Proof Assistant / The Coq Development Team *)
23 (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
25 (* \VV/ **************************************************************)
27 (* // * This file is distributed under the terms of the *)
29 (* * GNU Lesser General Public License Version 2.1 *)
31 (*#***********************************************************************)
33 (*i $Id: Zeven.v,v 1.3.2.1 2004/07/16 19:31:21 herbelin Exp $ i*)
35 include "ZArith/BinInt.ma".
37 (*#*********************************************************************)
39 (*#* About parity: even and odd predicates on Z, division by 2 on Z *)
41 (*#*********************************************************************)
43 (*#* [Zeven], [Zodd], [Zdiv2] and their related properties *)
45 inline procedural "cic:/Coq/ZArith/Zeven/Zeven.con" as definition.
47 inline procedural "cic:/Coq/ZArith/Zeven/Zodd.con" as definition.
49 inline procedural "cic:/Coq/ZArith/Zeven/Zeven_bool.con" as definition.
51 inline procedural "cic:/Coq/ZArith/Zeven/Zodd_bool.con" as definition.
53 inline procedural "cic:/Coq/ZArith/Zeven/Zeven_odd_dec.con" as definition.
55 inline procedural "cic:/Coq/ZArith/Zeven/Zeven_dec.con" as definition.
57 inline procedural "cic:/Coq/ZArith/Zeven/Zodd_dec.con" as definition.
59 inline procedural "cic:/Coq/ZArith/Zeven/Zeven_not_Zodd.con" as lemma.
61 inline procedural "cic:/Coq/ZArith/Zeven/Zodd_not_Zeven.con" as lemma.
63 inline procedural "cic:/Coq/ZArith/Zeven/Zeven_Sn.con" as lemma.
65 inline procedural "cic:/Coq/ZArith/Zeven/Zodd_Sn.con" as lemma.
67 inline procedural "cic:/Coq/ZArith/Zeven/Zeven_pred.con" as lemma.
69 inline procedural "cic:/Coq/ZArith/Zeven/Zodd_pred.con" as lemma.
72 Hint Unfold Zeven Zodd: zarith.
75 (*#*********************************************************************)
77 (*#* [Zdiv2] is defined on all [Z], but notice that for odd negative
78 integers it is not the euclidean quotient: in that case we have [n =
81 inline procedural "cic:/Coq/ZArith/Zeven/Zdiv2.con" as definition.
83 inline procedural "cic:/Coq/ZArith/Zeven/Zeven_div2.con" as lemma.
85 inline procedural "cic:/Coq/ZArith/Zeven/Zodd_div2.con" as lemma.
87 inline procedural "cic:/Coq/ZArith/Zeven/Zodd_div2_neg.con" as lemma.
89 inline procedural "cic:/Coq/ZArith/Zeven/Z_modulo_2.con" as lemma.
91 inline procedural "cic:/Coq/ZArith/Zeven/Zsplit2.con" as lemma.