2 <!-- ============ Tactics ====================== -->
3 <chapter id="sec_tactics">
6 <sect1 id="tactics_quickref">
7 <title>Quick reference card</title>
13 <sect1 id="tac_absurd">
15 <titleabbrev>absurd</titleabbrev>
16 <para><userinput>absurd P</userinput></para>
19 <varlistentry role="tactic.synopsis">
20 <term>Synopsis:</term>
22 <para><emphasis role="bold">absurd</emphasis> &sterm;</para>
26 <term>Pre-conditions:</term>
28 <para><command>P</command> must have type <command>Prop</command>.</para>
34 <para>It closes the current sequent by eliminating an
39 <term>New sequents to prove:</term>
41 <para>It opens two new sequents of conclusion <command>P</command>
42 and <command>¬P</command>.</para>
48 <sect1 id="tac_apply">
50 <titleabbrev>apply</titleabbrev>
51 <para><userinput>apply t</userinput></para>
54 <varlistentry role="tactic.synopsis">
55 <term>Synopsis:</term>
57 <para><emphasis role="bold">apply</emphasis> &sterm;</para>
61 <term>Pre-conditions:</term>
63 <para><command>t</command> must have type
64 <command>T<subscript>1</subscript> → … →
65 T<subscript>n</subscript> → G</command>
66 where <command>G</command> can be unified with the conclusion
67 of the current sequent.</para>
73 <para>It closes the current sequent by applying <command>t</command> to <command>n</command> implicit arguments (that become new sequents).</para>
77 <term>New sequents to prove:</term>
79 <para>It opens a new sequent for each premise
80 <command>T<subscript>i</subscript></command> that is not
81 instantiated by unification. <command>T<subscript>i</subscript></command> is
82 the conclusion of the <command>i</command>-th new sequent to
89 <sect1 id="tac_applyS">
91 <titleabbrev>applyS</titleabbrev>
92 <para><userinput>applyS t auto_params</userinput></para>
95 <varlistentry role="tactic.synopsis">
96 <term>Synopsis:</term>
98 <para><emphasis role="bold">applyS</emphasis> &sterm; &autoparams;</para>
102 <term>Pre-conditions:</term>
104 <para><command>t</command> must have type
105 <command>T<subscript>1</subscript> → ... →
106 T<subscript>n</subscript> → G</command>.</para>
112 <para><command>applyS</command> is useful when
113 <command>apply</command> fails because the current goal
114 and the conclusion of the applied theorems are extensionally
115 equivalent up to instantiation of metavariables, but cannot
116 be unified. E.g. the goal is <command>P(n*O+m)</command> and
117 the theorem to be applied proves <command>∀m.P(m+O)</command>.
120 It tries to automatically rewrite the current goal using
121 <link linkend="tac_auto">auto paramodulation</link>
122 to make it unifiable with <command>G</command>.
123 Then it closes the current sequent by applying
124 <command>t</command> to <command>n</command>
125 implicit arguments (that become new sequents).
126 The <command>auto_params</command> parameters are passed
127 directly to <command>auto paramodulation</command>.
132 <term>New sequents to prove:</term>
134 <para>It opens a new sequent for each premise
135 <command>T<subscript>i</subscript></command> that is not
136 instantiated by unification. <command>T<subscript>i</subscript></command> is
137 the conclusion of the <command>i</command>-th new sequent to
144 <sect1 id="tac_assumption">
145 <title>assumption</title>
146 <titleabbrev>assumption</titleabbrev>
147 <para><userinput>assumption </userinput></para>
150 <varlistentry role="tactic.synopsis">
151 <term>Synopsis:</term>
153 <para><emphasis role="bold">assumption</emphasis></para>
157 <term>Pre-conditions:</term>
159 <para>There must exist an hypothesis whose type can be unified with
160 the conclusion of the current sequent.</para>
166 <para>It closes the current sequent exploiting an hypothesis.</para>
170 <term>New sequents to prove:</term>
178 <sect1 id="tac_auto">
180 <titleabbrev>auto</titleabbrev>
181 <para><userinput>auto params</userinput></para>
184 <varlistentry role="tactic.synopsis">
185 <term>Synopsis:</term>
187 <para><emphasis role="bold">auto</emphasis> &autoparams;. </para>
188 <para><emphasis role="bold">autobatch</emphasis> &autoparams;</para>
192 <term>Pre-conditions:</term>
194 <para>None, but the tactic may fail finding a proof if every
195 proof is in the search space that is pruned away. Pruning is
196 controlled by the optional <command>params</command>.
197 Moreover, only lemmas whose type signature is a subset of the
198 signature of the current sequent are considered. The signature of
199 a sequent is essentially the set of constats appearing in it.
206 <para>It closes the current sequent by repeated application of
207 rewriting steps (unless <command>paramodulation</command> is
208 omitted), hypothesis and lemmas in the library.</para>
212 <term>New sequents to prove:</term>
220 <sect1 id="tac_cases">
222 <titleabbrev>cases</titleabbrev>
228 <varlistentry role="tactic.synopsis">
229 <term>Synopsis:</term>
232 <emphasis role="bold">cases</emphasis>
233 &term; &pattern; [<emphasis role="bold">(</emphasis>[&id;]…<emphasis role="bold">)</emphasis>]
238 <term>Pre-conditions:</term>
241 <command>t</command> must inhabit an inductive type
249 It proceed by cases on <command>t</command>. The new generated
250 hypothesis in each branch are named according to
251 <command>hyps</command>.
252 The elimintation predicate is restricted by
253 <command>pattern</command>. In particular, if some hypothesis
254 is listed in <command>pattern</command>, the hypothesis is
255 generalized and cleared before proceeding by cases on
256 <command>t</command>. Currently, we only support patterns of the
257 form <command>H<subscript>1</subscript> … H<subscript>n</subscript> ⊢ %</command>. This limitation will be lifted in the future.
262 <term>New sequents to prove:</term>
264 <para>One new sequent for each constructor of the type of
265 <command>t</command>. Each sequent has a new hypothesis for
266 each argument of the constructor.</para>
272 <sect1 id="tac_clear">
274 <titleabbrev>clear</titleabbrev>
276 clear H<subscript>1</subscript> ... H<subscript>m</subscript>
280 <varlistentry role="tactic.synopsis">
281 <term>Synopsis:</term>
284 <emphasis role="bold">clear</emphasis>
290 <term>Pre-conditions:</term>
294 H<subscript>1</subscript> ... H<subscript>m</subscript>
295 </command> must be hypotheses of the
296 current sequent to prove.
304 It hides the hypotheses
306 H<subscript>1</subscript> ... H<subscript>m</subscript>
307 </command> from the current sequent.
312 <term>New sequents to prove:</term>
320 <sect1 id="tac_clearbody">
321 <title>clearbody</title>
322 <titleabbrev>clearbody</titleabbrev>
323 <para><userinput>clearbody H</userinput></para>
326 <varlistentry role="tactic.synopsis">
327 <term>Synopsis:</term>
329 <para><emphasis role="bold">clearbody</emphasis> &id;</para>
333 <term>Pre-conditions:</term>
335 <para><command>H</command> must be an hypothesis of the
336 current sequent to prove.</para>
342 <para>It hides the definiens of a definition in the current
343 sequent context. Thus the definition becomes an hypothesis.</para>
347 <term>New sequents to prove:</term>
355 <sect1 id="tac_compose">
356 <title>compose</title>
357 <titleabbrev>compose</titleabbrev>
358 <para><userinput>compose n t1 with t2 hyps</userinput></para>
361 <varlistentry role="tactic.synopsis">
362 <term>Synopsis:</term>
364 <para><emphasis role="bold">compose</emphasis> [&nat;] &sterm; [<emphasis role="bold">with</emphasis> &sterm;] [&intros-spec;]</para>
368 <term>Pre-conditions:</term>
376 <para>Composes t1 with t2 in every possible way
377 <command>n</command> times introducing generated terms
378 as if <command>intros hyps</command> was issued.</para>
379 <para>If <command>t1:∀x:A.B[x]</command> and
380 <command>t2:∀x,y:A.B[x]→B[y]→C[x,y]</command> it generates:
383 <para><command>λx,y:A.t2 x y (t1 x) : ∀x,y:A.B[y]→C[x,y]</command></para>
386 <para><command>λx,y:A.λH:B[x].t2 x y H (t1 y) : ∀x,y:A.B[x]→C[x,y]
391 <para>If <command>t2</command> is omitted it composes
392 <command>t1</command>
393 with every hypothesis that can be introduced.
394 <command>n</command> iterates the process.</para>
398 <term>New sequents to prove:</term>
400 <para>The same, but with more hypothesis eventually introduced
401 by the &intros-spec;.</para>
407 <sect1 id="tac_change">
408 <title>change</title>
409 <titleabbrev>change</titleabbrev>
410 <para><userinput>change patt with t</userinput></para>
413 <varlistentry role="tactic.synopsis">
414 <term>Synopsis:</term>
416 <para><emphasis role="bold">change</emphasis> &pattern; <emphasis role="bold">with</emphasis> &sterm;</para>
420 <term>Pre-conditions:</term>
422 <para>Each subterm matched by the pattern must be convertible
423 with the term <command>t</command> disambiguated in the context
424 of the matched subterm.</para>
430 <para>It replaces the subterms of the current sequent matched by
431 <command>patt</command> with the new term <command>t</command>.
432 For each subterm matched by the pattern, <command>t</command> is
433 disambiguated in the context of the subterm.</para>
437 <term>New sequents to prove:</term>
445 <sect1 id="tac_constructor">
446 <title>constructor</title>
447 <titleabbrev>constructor</titleabbrev>
448 <para><userinput>constructor n</userinput></para>
451 <varlistentry role="tactic.synopsis">
452 <term>Synopsis:</term>
454 <para><emphasis role="bold">constructor</emphasis> &nat;</para>
458 <term>Pre-conditions:</term>
460 <para>The conclusion of the current sequent must be
461 an inductive type or the application of an inductive type with
462 at least <command>n</command> constructors.</para>
468 <para>It applies the <command>n</command>-th constructor of the
469 inductive type of the conclusion of the current sequent.</para>
473 <term>New sequents to prove:</term>
475 <para>It opens a new sequent for each premise of the constructor
476 that can not be inferred by unification. For more details,
477 see the <command>apply</command> tactic.</para>
483 <sect1 id="tac_contradiction">
484 <title>contradiction</title>
485 <titleabbrev>contradiction</titleabbrev>
486 <para><userinput>contradiction </userinput></para>
489 <varlistentry role="tactic.synopsis">
490 <term>Synopsis:</term>
492 <para><emphasis role="bold">contradiction</emphasis></para>
496 <term>Pre-conditions:</term>
498 <para>There must be in the current context an hypothesis of type
499 <command>False</command>.</para>
505 <para>It closes the current sequent by applying an hypothesis of
506 type <command>False</command>.</para>
510 <term>New sequents to prove:</term>
520 <titleabbrev>cut</titleabbrev>
521 <para><userinput>cut P as H</userinput></para>
524 <varlistentry role="tactic.synopsis">
525 <term>Synopsis:</term>
527 <para><emphasis role="bold">cut</emphasis> &sterm; [<emphasis role="bold">as</emphasis> &id;]</para>
531 <term>Pre-conditions:</term>
533 <para><command>P</command> must have type <command>Prop</command>.</para>
539 <para>It closes the current sequent.</para>
543 <term>New sequents to prove:</term>
545 <para>It opens two new sequents. The first one has an extra
546 hypothesis <command>H:P</command>. If <command>H</command> is
547 omitted, the name of the hypothesis is automatically generated.
548 The second sequent has conclusion <command>P</command> and
549 hypotheses the hypotheses of the current sequent to prove.</para>
555 <sect1 id="tac_decompose">
556 <title>decompose</title>
557 <titleabbrev>decompose</titleabbrev>
559 decompose as H<subscript>1</subscript> ... H<subscript>m</subscript>
563 <varlistentry role="tactic.synopsis">
564 <term>Synopsis:</term>
567 <emphasis role="bold">decompose</emphasis>
568 [<emphasis role="bold">as</emphasis> &id;…]
573 <term>Pre-conditions:</term>
582 For each each premise <command>H</command> of type
583 <command>T</command> in the current context where
584 <command>T</command> is a non-recursive inductive type without
585 right parameters and of sort Prop or CProp, the tactic runs
587 elim H as H<subscript>1</subscript> ... H<subscript>m</subscript>
588 </command>, clears <command>H</command> and runs itself
589 recursively on each new premise introduced by
590 <command>elim</command> in the opened sequents.
595 <term>New sequents to prove:</term>
598 The ones generated by all the <command>elim</command> tactics run.
605 <sect1 id="tac_demodulate">
606 <title>demodulate</title>
607 <titleabbrev>demodulate</titleabbrev>
608 <para><userinput>demodulate auto_params</userinput></para>
611 <varlistentry role="tactic.synopsis">
612 <term>Synopsis:</term>
614 <para><emphasis role="bold">demodulate</emphasis> &autoparams;</para>
618 <term>Pre-conditions:</term>
630 <term>New sequents to prove:</term>
638 <sect1 id="tac_destruct">
639 <title>destruct</title>
640 <titleabbrev>destruct</titleabbrev>
641 <para><userinput>destruct p</userinput></para>
644 <varlistentry role="tactic.synopsis">
645 <term>Synopsis:</term>
647 <para><emphasis role="bold">destruct</emphasis> &sterm;</para>
651 <term>Pre-conditions:</term>
653 <para><command>p</command> must have type <command>E<subscript>1</subscript> = E<subscript>2</subscript></command> where the two sides of the equality are possibly applied constructors of an inductive type.</para>
659 <para>The tactic recursively compare the two sides of the equality
660 looking for different constructors in corresponding position.
661 If two of them are found, the tactic closes the current sequent
662 by proving the absurdity of <command>p</command>. Otherwise
663 it adds a new hypothesis for each leaf of the formula that
664 states the equality of the subformulae in the corresponding
665 positions on the two sides of the equality.
670 <term>New sequents to prove:</term>
678 <sect1 id="tac_elim">
680 <titleabbrev>elim</titleabbrev>
681 <para><userinput>elim t pattern using th hyps</userinput></para>
684 <varlistentry role="tactic.synopsis">
685 <term>Synopsis:</term>
687 <para><emphasis role="bold">elim</emphasis> &sterm; &pattern; [<emphasis role="bold">using</emphasis> &sterm;] &intros-spec;</para>
691 <term>Pre-conditions:</term>
693 <para><command>t</command> must inhabit an inductive type and
694 <command>th</command> must be an elimination principle for that
695 inductive type. If <command>th</command> is omitted the appropriate
696 standard elimination principle is chosen.</para>
702 <para>It proceeds by cases on the values of <command>t</command>,
703 according to the elimination principle <command>th</command>.
704 The induction predicate is restricted by
705 <command>pattern</command>. In particular, if some hypothesis
706 is listed in <command>pattern</command>, the hypothesis is
707 generalized and cleared before eliminating <command>t</command>
712 <term>New sequents to prove:</term>
714 <para>It opens one new sequent for each case. The names of
715 the new hypotheses are picked by <command>hyps</command>, if
716 provided. If hyps specifies also a number of hypotheses that
717 is less than the number of new hypotheses for a new sequent,
718 then the exceeding hypothesis will be kept as implications in
719 the conclusion of the sequent.</para>
725 <sect1 id="tac_elimType">
726 <title>elimType</title>
727 <titleabbrev>elimType</titleabbrev>
728 <para><userinput>elimType T using th hyps</userinput></para>
731 <varlistentry role="tactic.synopsis">
732 <term>Synopsis:</term>
734 <para><emphasis role="bold">elimType</emphasis> &sterm; [<emphasis role="bold">using</emphasis> &sterm;] &intros-spec;</para>
738 <term>Pre-conditions:</term>
740 <para><command>T</command> must be an inductive type.</para>
746 <para>TODO (severely bugged now).</para>
750 <term>New sequents to prove:</term>
758 <sect1 id="tac_exact">
760 <titleabbrev>exact</titleabbrev>
761 <para><userinput>exact p</userinput></para>
764 <varlistentry role="tactic.synopsis">
765 <term>Synopsis:</term>
767 <para><emphasis role="bold">exact</emphasis> &sterm;</para>
771 <term>Pre-conditions:</term>
773 <para>The type of <command>p</command> must be convertible
774 with the conclusion of the current sequent.</para>
780 <para>It closes the current sequent using <command>p</command>.</para>
784 <term>New sequents to prove:</term>
792 <sect1 id="tac_exists">
793 <title>exists</title>
794 <titleabbrev>exists</titleabbrev>
795 <para><userinput>exists </userinput></para>
798 <varlistentry role="tactic.synopsis">
799 <term>Synopsis:</term>
801 <para><emphasis role="bold">exists</emphasis></para>
805 <term>Pre-conditions:</term>
807 <para>The conclusion of the current sequent must be
808 an inductive type or the application of an inductive type
809 with at least one constructor.</para>
815 <para>Equivalent to <command>constructor 1</command>.</para>
819 <term>New sequents to prove:</term>
821 <para>It opens a new sequent for each premise of the first
822 constructor of the inductive type that is the conclusion of the
823 current sequent. For more details, see the <command>constructor</command> tactic.</para>
829 <sect1 id="tac_fail">
831 <titleabbrev>fail</titleabbrev>
832 <para><userinput>fail</userinput></para>
835 <varlistentry role="tactic.synopsis">
836 <term>Synopsis:</term>
838 <para><emphasis role="bold">fail</emphasis></para>
842 <term>Pre-conditions:</term>
850 <para>This tactic always fail.</para>
854 <term>New sequents to prove:</term>
862 <sect1 id="tac_fold">
864 <titleabbrev>fold</titleabbrev>
865 <para><userinput>fold red t patt</userinput></para>
868 <varlistentry role="tactic.synopsis">
869 <term>Synopsis:</term>
871 <para><emphasis role="bold">fold</emphasis> &reduction-kind; &sterm; &pattern;</para>
875 <term>Pre-conditions:</term>
877 <para>The pattern must not specify the wanted term.</para>
883 <para>First of all it locates all the subterms matched by
884 <command>patt</command>. In the context of each matched subterm
885 it disambiguates the term <command>t</command> and reduces it
886 to its <command>red</command> normal form; then it replaces with
887 <command>t</command> every occurrence of the normal form in the
888 matched subterm.</para>
892 <term>New sequents to prove:</term>
900 <sect1 id="tac_fourier">
901 <title>fourier</title>
902 <titleabbrev>fourier</titleabbrev>
903 <para><userinput>fourier </userinput></para>
906 <varlistentry role="tactic.synopsis">
907 <term>Synopsis:</term>
909 <para><emphasis role="bold">fourier</emphasis></para>
913 <term>Pre-conditions:</term>
915 <para>The conclusion of the current sequent must be a linear
916 inequation over real numbers taken from standard library of
917 Coq. Moreover the inequations in the hypotheses must imply the
918 inequation in the conclusion of the current sequent.</para>
924 <para>It closes the current sequent by applying the Fourier method.</para>
928 <term>New sequents to prove:</term>
938 <titleabbrev>fwd</titleabbrev>
939 <para><userinput>fwd H as H<subscript>0</subscript> ... H<subscript>n</subscript></userinput></para>
942 <varlistentry role="tactic.synopsis">
943 <term>Synopsis:</term>
945 <para><emphasis role="bold">fwd</emphasis> &id; [<emphasis role="bold">as</emphasis> &id; [&id;]…]</para>
949 <term>Pre-conditions:</term>
952 The type of <command>H</command> must be the premise of a
953 forward simplification theorem.
961 This tactic is under development.
962 It simplifies the current context by removing
963 <command>H</command> using the following methods:
964 forward application (by <command>lapply</command>) of a suitable
965 simplification theorem, chosen automatically, of which the type
966 of <command>H</command> is a premise,
967 decomposition (by <command>decompose</command>),
968 rewriting (by <command>rewrite</command>).
969 <command>H<subscript>0</subscript> ... H<subscript>n</subscript></command>
970 are passed to the tactics <command>fwd</command> invokes, as
971 names for the premise they introduce.
976 <term>New sequents to prove:</term>
979 The ones opened by the tactics <command>fwd</command> invokes.
986 <sect1 id="tac_generalize">
987 <title>generalize</title>
988 <titleabbrev>generalize</titleabbrev>
989 <para><userinput>generalize patt as H</userinput></para>
992 <varlistentry role="tactic.synopsis">
993 <term>Synopsis:</term>
995 <para><emphasis role="bold">generalize</emphasis> &pattern; [<emphasis role="bold">as</emphasis> &id;]</para>
999 <term>Pre-conditions:</term>
1001 <para>All the terms matched by <command>patt</command> must be
1002 convertible and close in the context of the current sequent.</para>
1006 <term>Action:</term>
1008 <para>It closes the current sequent by applying a stronger
1009 lemma that is proved using the new generated sequent.</para>
1013 <term>New sequents to prove:</term>
1015 <para>It opens a new sequent where the current sequent conclusion
1016 <command>G</command> is generalized to
1017 <command>∀x.G{x/t}</command> where <command>{x/t}</command>
1018 is a notation for the replacement with <command>x</command> of all
1019 the occurrences of the term <command>t</command> matched by
1020 <command>patt</command>. If <command>patt</command> matches no
1021 subterm then <command>t</command> is defined as the
1022 <command>wanted</command> part of the pattern.</para>
1030 <titleabbrev>id</titleabbrev>
1031 <para><userinput>id </userinput></para>
1034 <varlistentry role="tactic.synopsis">
1035 <term>Synopsis:</term>
1037 <para><emphasis role="bold">id</emphasis></para>
1041 <term>Pre-conditions:</term>
1047 <term>Action:</term>
1049 <para>This identity tactic does nothing without failing.</para>
1053 <term>New sequents to prove:</term>
1061 <sect1 id="tac_intro">
1062 <title>intro</title>
1063 <titleabbrev>intro</titleabbrev>
1064 <para><userinput>intro H</userinput></para>
1067 <varlistentry role="tactic.synopsis">
1068 <term>Synopsis:</term>
1070 <para><emphasis role="bold">intro</emphasis> [&id;]</para>
1074 <term>Pre-conditions:</term>
1076 <para>The conclusion of the sequent to prove must be an implication
1077 or a universal quantification.</para>
1081 <term>Action:</term>
1083 <para>It applies the right introduction rule for implication,
1084 closing the current sequent.</para>
1088 <term>New sequents to prove:</term>
1090 <para>It opens a new sequent to prove adding to the hypothesis
1091 the antecedent of the implication and setting the conclusion
1092 to the consequent of the implicaiton. The name of the new
1093 hypothesis is <command>H</command> if provided; otherwise it
1094 is automatically generated.</para>
1100 <sect1 id="tac_intros">
1101 <title>intros</title>
1102 <titleabbrev>intros</titleabbrev>
1103 <para><userinput>intros hyps</userinput></para>
1106 <varlistentry role="tactic.synopsis">
1107 <term>Synopsis:</term>
1109 <para><emphasis role="bold">intros</emphasis> &intros-spec;</para>
1113 <term>Pre-conditions:</term>
1115 <para>If <command>hyps</command> specifies a number of hypotheses
1116 to introduce, then the conclusion of the current sequent must
1117 be formed by at least that number of imbricated implications
1118 or universal quantifications.</para>
1122 <term>Action:</term>
1124 <para>It applies several times the right introduction rule for
1125 implication, closing the current sequent.</para>
1129 <term>New sequents to prove:</term>
1131 <para>It opens a new sequent to prove adding a number of new
1132 hypotheses equal to the number of new hypotheses requested.
1133 If the user does not request a precise number of new hypotheses,
1134 it adds as many hypotheses as possible.
1135 The name of each new hypothesis is either popped from the
1136 user provided list of names, or it is automatically generated when
1137 the list is (or becomes) empty.</para>
1143 <sect1 id="tac_inversion">
1144 <title>inversion</title>
1145 <titleabbrev>inversion</titleabbrev>
1146 <para><userinput>inversion t</userinput></para>
1149 <varlistentry role="tactic.synopsis">
1150 <term>Synopsis:</term>
1152 <para><emphasis role="bold">inversion</emphasis> &sterm;</para>
1156 <term>Pre-conditions:</term>
1158 <para>The type of the term <command>t</command> must be an inductive
1159 type or the application of an inductive type.</para>
1163 <term>Action:</term>
1165 <para>It proceeds by cases on <command>t</command> paying attention
1166 to the constraints imposed by the actual "right arguments"
1167 of the inductive type.</para>
1171 <term>New sequents to prove:</term>
1173 <para>It opens one new sequent to prove for each case in the
1174 definition of the type of <command>t</command>. With respect to
1175 a simple elimination, each new sequent has additional hypotheses
1176 that states the equalities of the "right parameters"
1177 of the inductive type with terms originally present in the
1178 sequent to prove.</para>
1184 <sect1 id="tac_lapply">
1185 <title>lapply</title>
1186 <titleabbrev>lapply</titleabbrev>
1188 lapply linear depth=d t
1189 to t<subscript>1</subscript>, ..., t<subscript>n</subscript> as H
1193 <varlistentry role="tactic.synopsis">
1194 <term>Synopsis:</term>
1197 <emphasis role="bold">lapply</emphasis>
1198 [<emphasis role="bold">linear</emphasis>]
1199 [<emphasis role="bold">depth=</emphasis>&nat;]
1201 [<emphasis role="bold">to</emphasis>
1203 [<emphasis role="bold">,</emphasis>&sterm;…]
1205 [<emphasis role="bold">as</emphasis> &id;]
1210 <term>Pre-conditions:</term>
1213 <command>t</command> must have at least <command>d</command>
1214 independent premises and <command>n</command> must not be
1215 greater than <command>d</command>.
1220 <term>Action:</term>
1223 Invokes <command>letin H ≝ (t ? ... ?)</command>
1224 with enough <command>?</command>'s to reach the
1225 <command>d</command>-th independent premise of
1226 <command>t</command>
1227 (<command>d</command> is maximum if unspecified).
1228 Then istantiates (by <command>apply</command>) with
1229 t<subscript>1</subscript>, ..., t<subscript>n</subscript>
1230 the <command>?</command>'s corresponding to the first
1231 <command>n</command> independent premises of
1232 <command>t</command>.
1233 Usually the other <command>?</command>'s preceding the
1234 <command>n</command>-th independent premise of
1235 <command>t</command> are istantiated as a consequence.
1236 If the <command>linear</command> flag is specified and if
1237 <command>t, t<subscript>1</subscript>, ..., t<subscript>n</subscript></command>
1238 are (applications of) premises in the current context, they are
1239 <command>clear</command>ed.
1244 <term>New sequents to prove:</term>
1247 The ones opened by the tactics <command>lapply</command> invokes.
1254 <sect1 id="tac_left">
1256 <titleabbrev>left</titleabbrev>
1257 <para><userinput>left </userinput></para>
1260 <varlistentry role="tactic.synopsis">
1261 <term>Synopsis:</term>
1263 <para><emphasis role="bold">left</emphasis></para>
1267 <term>Pre-conditions:</term>
1269 <para>The conclusion of the current sequent must be
1270 an inductive type or the application of an inductive type
1271 with at least one constructor.</para>
1275 <term>Action:</term>
1277 <para>Equivalent to <command>constructor 1</command>.</para>
1281 <term>New sequents to prove:</term>
1283 <para>It opens a new sequent for each premise of the first
1284 constructor of the inductive type that is the conclusion of the
1285 current sequent. For more details, see the <command>constructor</command> tactic.</para>
1291 <sect1 id="tac_letin">
1292 <title>letin</title>
1293 <titleabbrev>letin</titleabbrev>
1294 <para><userinput>letin x ≝ t</userinput></para>
1297 <varlistentry role="tactic.synopsis">
1298 <term>Synopsis:</term>
1300 <para><emphasis role="bold">letin</emphasis> &id; <emphasis role="bold">≝</emphasis> &sterm;</para>
1304 <term>Pre-conditions:</term>
1310 <term>Action:</term>
1312 <para>It adds to the context of the current sequent to prove a new
1313 definition <command>x ≝ t</command>.</para>
1317 <term>New sequents to prove:</term>
1325 <sect1 id="tac_normalize">
1326 <title>normalize</title>
1327 <titleabbrev>normalize</titleabbrev>
1328 <para><userinput>normalize patt</userinput></para>
1331 <varlistentry role="tactic.synopsis">
1332 <term>Synopsis:</term>
1334 <para><emphasis role="bold">normalize</emphasis> &pattern;</para>
1338 <term>Pre-conditions:</term>
1344 <term>Action:</term>
1346 <para>It replaces all the terms matched by <command>patt</command>
1347 with their βδιζ-normal form.</para>
1351 <term>New sequents to prove:</term>
1359 <sect1 id="tac_reflexivity">
1360 <title>reflexivity</title>
1361 <titleabbrev>reflexivity</titleabbrev>
1362 <para><userinput>reflexivity </userinput></para>
1365 <varlistentry role="tactic.synopsis">
1366 <term>Synopsis:</term>
1368 <para><emphasis role="bold">reflexivity</emphasis></para>
1372 <term>Pre-conditions:</term>
1374 <para>The conclusion of the current sequent must be
1375 <command>t=t</command> for some term <command>t</command></para>
1379 <term>Action:</term>
1381 <para>It closes the current sequent by reflexivity
1386 <term>New sequents to prove:</term>
1394 <sect1 id="tac_replace">
1395 <title>replace</title>
1396 <titleabbrev>change</titleabbrev>
1397 <para><userinput>change patt with t</userinput></para>
1400 <varlistentry role="tactic.synopsis">
1401 <term>Synopsis:</term>
1403 <para><emphasis role="bold">replace</emphasis> &pattern; <emphasis role="bold">with</emphasis> &sterm;</para>
1407 <term>Pre-conditions:</term>
1413 <term>Action:</term>
1415 <para>It replaces the subterms of the current sequent matched by
1416 <command>patt</command> with the new term <command>t</command>.
1417 For each subterm matched by the pattern, <command>t</command> is
1418 disambiguated in the context of the subterm.</para>
1422 <term>New sequents to prove:</term>
1424 <para>For each matched term <command>t'</command> it opens
1425 a new sequent to prove whose conclusion is
1426 <command>t'=t</command>.</para>
1432 <sect1 id="tac_rewrite">
1433 <title>rewrite</title>
1434 <titleabbrev>rewrite</titleabbrev>
1435 <para><userinput>rewrite dir p patt</userinput></para>
1438 <varlistentry role="tactic.synopsis">
1439 <term>Synopsis:</term>
1441 <para><emphasis role="bold">rewrite</emphasis> [<emphasis role="bold"><</emphasis>|<emphasis role="bold">></emphasis>] &sterm; &pattern;</para>
1445 <term>Pre-conditions:</term>
1447 <para><command>p</command> must be the proof of an equality,
1448 possibly under some hypotheses.</para>
1452 <term>Action:</term>
1454 <para>It looks in every term matched by <command>patt</command>
1455 for all the occurrences of the
1456 left hand side of the equality that <command>p</command> proves
1457 (resp. the right hand side if <command>dir</command> is
1458 <command><</command>). Every occurence found is replaced with
1459 the opposite side of the equality.</para>
1463 <term>New sequents to prove:</term>
1465 <para>It opens one new sequent for each hypothesis of the
1466 equality proved by <command>p</command> that is not closed
1467 by unification.</para>
1473 <sect1 id="tac_right">
1474 <title>right</title>
1475 <titleabbrev>right</titleabbrev>
1476 <para><userinput>right </userinput></para>
1479 <varlistentry role="tactic.synopsis">
1480 <term>Synopsis:</term>
1482 <para><emphasis role="bold">right</emphasis></para>
1486 <term>Pre-conditions:</term>
1488 <para>The conclusion of the current sequent must be
1489 an inductive type or the application of an inductive type with
1490 at least two constructors.</para>
1494 <term>Action:</term>
1496 <para>Equivalent to <command>constructor 2</command>.</para>
1500 <term>New sequents to prove:</term>
1502 <para>It opens a new sequent for each premise of the second
1503 constructor of the inductive type that is the conclusion of the
1504 current sequent. For more details, see the <command>constructor</command> tactic.</para>
1510 <sect1 id="tac_ring">
1512 <titleabbrev>ring</titleabbrev>
1513 <para><userinput>ring </userinput></para>
1516 <varlistentry role="tactic.synopsis">
1517 <term>Synopsis:</term>
1519 <para><emphasis role="bold">ring</emphasis></para>
1523 <term>Pre-conditions:</term>
1525 <para>The conclusion of the current sequent must be an
1526 equality over Coq's real numbers that can be proved using
1527 the ring properties of the real numbers only.</para>
1531 <term>Action:</term>
1533 <para>It closes the current sequent veryfying the equality by
1534 means of computation (i.e. this is a reflexive tactic, implemented
1535 exploiting the "two level reasoning" technique).</para>
1539 <term>New sequents to prove:</term>
1547 <sect1 id="tac_simplify">
1548 <title>simplify</title>
1549 <titleabbrev>simplify</titleabbrev>
1550 <para><userinput>simplify patt</userinput></para>
1553 <varlistentry role="tactic.synopsis">
1554 <term>Synopsis:</term>
1556 <para><emphasis role="bold">simplify</emphasis> &pattern;</para>
1560 <term>Pre-conditions:</term>
1566 <term>Action:</term>
1568 <para>It replaces all the terms matched by <command>patt</command>
1569 with other convertible terms that are supposed to be simpler.</para>
1573 <term>New sequents to prove:</term>
1581 <sect1 id="tac_split">
1582 <title>split</title>
1583 <titleabbrev>split</titleabbrev>
1584 <para><userinput>split </userinput></para>
1587 <varlistentry role="tactic.synopsis">
1588 <term>Synopsis:</term>
1590 <para><emphasis role="bold">split</emphasis></para>
1594 <term>Pre-conditions:</term>
1596 <para>The conclusion of the current sequent must be
1597 an inductive type or the application of an inductive type with
1598 at least one constructor.</para>
1602 <term>Action:</term>
1604 <para>Equivalent to <command>constructor 1</command>.</para>
1608 <term>New sequents to prove:</term>
1610 <para>It opens a new sequent for each premise of the first
1611 constructor of the inductive type that is the conclusion of the
1612 current sequent. For more details, see the <command>constructor</command> tactic.</para>
1619 <sect1 id="tac_subst">
1620 <title>subst</title>
1621 <titleabbrev>subst</titleabbrev>
1622 <para><userinput>subst</userinput></para>
1625 <varlistentry role="tactic.synopsis">
1626 <term>Synopsis:</term>
1628 <para><emphasis role="bold">subst</emphasis></para>
1632 <term>Pre-conditions:</term>
1638 <term>Action:</term>
1640 For each premise of the form
1641 <command>H: x = t</command> or <command>H: t = x</command>
1642 where <command>x</command> is a local variable and
1643 <command>t</command> does not depend on <command>x</command>,
1644 the tactic rewrites <command>H</command> wherever
1645 <command>x</command> appears clearing <command>H</command> and
1646 <command>x</command> afterwards.
1650 <term>New sequents to prove:</term>
1652 The one opened by the applied tactics.
1658 <sect1 id="tac_symmetry">
1659 <title>symmetry</title>
1660 <titleabbrev>symmetry</titleabbrev>
1661 <para>The tactic <command>symmetry</command> </para>
1662 <para><userinput>symmetry </userinput></para>
1665 <varlistentry role="tactic.synopsis">
1666 <term>Synopsis:</term>
1668 <para><emphasis role="bold">symmetry</emphasis></para>
1672 <term>Pre-conditions:</term>
1674 <para>The conclusion of the current proof must be an equality.</para>
1678 <term>Action:</term>
1680 <para>It swaps the two sides of the equalityusing the symmetric
1685 <term>New sequents to prove:</term>
1693 <sect1 id="tac_transitivity">
1694 <title>transitivity</title>
1695 <titleabbrev>transitivity</titleabbrev>
1696 <para><userinput>transitivity t</userinput></para>
1699 <varlistentry role="tactic.synopsis">
1700 <term>Synopsis:</term>
1702 <para><emphasis role="bold">transitivity</emphasis> &sterm;</para>
1706 <term>Pre-conditions:</term>
1708 <para>The conclusion of the current proof must be an equality.</para>
1712 <term>Action:</term>
1714 <para>It closes the current sequent by transitivity of the equality.</para>
1718 <term>New sequents to prove:</term>
1720 <para>It opens two new sequents <command>l=t</command> and
1721 <command>t=r</command> where <command>l</command> and <command>r</command> are the left and right hand side of the equality in the conclusion of
1722 the current sequent to prove.</para>
1728 <sect1 id="tac_unfold">
1729 <title>unfold</title>
1730 <titleabbrev>unfold</titleabbrev>
1731 <para><userinput>unfold t patt</userinput></para>
1734 <varlistentry role="tactic.synopsis">
1735 <term>Synopsis:</term>
1737 <para><emphasis role="bold">unfold</emphasis> [&sterm;] &pattern;</para>
1741 <term>Pre-conditions:</term>
1747 <term>Action:</term>
1749 <para>It finds all the occurrences of <command>t</command>
1750 (possibly applied to arguments) in the subterms matched by
1751 <command>patt</command>. Then it δ-expands each occurrence,
1752 also performing β-reduction of the obtained term. If
1753 <command>t</command> is omitted it defaults to each
1754 subterm matched by <command>patt</command>.</para>
1758 <term>New sequents to prove:</term>
1766 <sect1 id="tac_whd">
1768 <titleabbrev>whd</titleabbrev>
1769 <para><userinput>whd patt</userinput></para>
1772 <varlistentry role="tactic.synopsis">
1773 <term>Synopsis:</term>
1775 <para><emphasis role="bold">whd</emphasis> &pattern;</para>
1779 <term>Pre-conditions:</term>
1785 <term>Action:</term>
1787 <para>It replaces all the terms matched by <command>patt</command>
1788 with their βδιζ-weak-head normal form.</para>
1792 <term>New sequents to prove:</term>