2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department of the University of Bologna, Italy.
7 ||A|| This file is distributed under the terms of the
8 \ / GNU General Public License Version 2
10 V_______________________________________________________________ *)
12 include "arithmetics/sqrt.ma".
13 include "arithmetics/chebyshev/psi_bounds.ma".
14 include "arithmetics/chebyshev/chebyshev_theta.ma".
16 definition bertrand ≝ λn. ∃p.n < p ∧ p ≤ 2*n ∧ prime p.
18 definition not_bertrand ≝ λn.∀p.n < p → p ≤ 2*n → ¬(prime p).
20 lemma min_prim : ∀n.∃p. n < p ∧ prime p ∧
21 ∀q.prime q → q < p → q ≤ n.
22 #n cases (le_to_or_lt_eq ?? (le_O_n n)) #Hn
23 [%{(min (S (n!)) (S n) primeb)} %
25 |@primeb_true_to_prime @(f_min_true primeb)
26 cases (ex_prime n Hn) #p * * #ltnp #lep #primep
28 [% [@ltnp | whd >(plus_n_O p) >plus_n_Sm @le_plus //]
29 |@prime_to_primeb_true //
32 |#p #primep #ltp @not_lt_to_le % #ltnp
33 lapply (lt_min_to_false … ltnp ltp)
34 >(prime_to_primeb_true ? primep) #H destruct (H)
37 [%[<Hn @lt_O_S | @primeb_true_to_prime //]
38 |#p #primep #lt2 @False_ind @(absurd … lt2)
39 @le_to_not_lt @prime_to_lt_SO //
44 lemma not_not_bertrand_to_bertrand1: ∀n.
45 ¬(not_bertrand n) → ∀x. n ≤ x → x ≤ 2*n →
46 (∀p.x < p → p ≤ 2*n → ¬(prime p))
47 → ∃p.n < p ∧ p ≤ x ∧ (prime p).
48 #n #not_not #x #lenx elim lenx
49 [#len #Bn @False_ind @(absurd ?? not_not) @Bn
50 |#n1 #lenn1 #Hind #ltn1 #HB cases (true_or_false (primeb (S n1))) #Hc
51 [%{(S n1)} % [% [@le_S_S // |//] |@primeb_true_to_prime // ]
53 [#p * * #ltnp #lep #primep %{p} %[%[@ltnp|@le_S//]|//]
55 |#p #ltp #lep cases (le_to_or_lt_eq ?? ltp) #Hcase
56 [@HB // |<Hcase @primeb_false_to_not_prime //]
62 theorem not_not_bertrand_to_bertrand: ∀n.
63 ¬(not_bertrand n) → bertrand n.
64 #n #not_not @(not_not_bertrand_to_bertrand1 ?? (2*n)) //
65 #p #le2n #lep @False_ind @(absurd ? le2n) @le_to_not_lt //
69 ∑_{i < log p n}((n/(exp p (S i))\mod 2)).
71 lemma k_def : ∀n,p. k n p = ∑_{i < log p n}((n/(exp p (S i))\mod 2)).
74 theorem le_k: ∀n,p. k n p ≤ log p n.
75 #n #p >k_def elim (log p n)
77 |#n1 #Hind >bigop_Strue
78 [>(plus_n_O n1) in ⊢ (??%); >plus_n_Sm >commutative_plus
81 |@le_S_S_to_le @lt_mod_m_m @lt_O_S
89 ∏_{p < S n | primeb p}(exp p (k n p)).
91 lemma Bk_def : ∀n. Bk n = ∏_{p < S n | primeb p}(exp p (k n p)).
94 definition Dexp ≝ mk_Dop nat 1 timesAC (λa,b.exp b a) ??.
98 theorem eq_B_Bk: ∀n. B n = Bk n.
99 #n >Bdef >Bk_def @same_bigop
100 [// |#i #ltiS #_ >k_def @exp_sigma_l]
104 ∏_{p < S n | primeb p}(exp p (bool_to_nat (leb (k n p) 1)* (k n p))).
107 B1 n = ∏_{p < S n | primeb p}(exp p (bool_to_nat (leb (k n p) 1)* (k n p))).
111 ∏_{p < S n | primeb p}(exp p (bool_to_nat (leb 2 (k n p))* (k n p))).
114 B2 n = ∏_{p < S n | primeb p}(exp p (bool_to_nat (leb 2 (k n p))* (k n p))).
117 theorem eq_Bk_B1_B2: ∀n.
119 #n >Bk_def >B1_def >B2_def <times_pi
122 |#p #ltp #primebp cases (true_or_false (leb (k n p) 1)) #Hc >Hc
123 [>(lt_to_leb_false 2 (k n p))
124 [<times_n_1 >commutative_times <times_n_1 //
125 |@le_S_S @leb_true_to_le //
127 |>(le_to_leb_true 2 (k n p))
128 [>commutative_times <times_n_1 >commutative_times <times_n_1 //
129 |@not_le_to_lt @leb_false_to_not_le //
135 lemma lt_div_to_times: ∀n,m,q. O < q → n/q < m → n < q*m.
137 cut (O < m) [@(ltn_to_ltO … ltm)] #posm
138 @not_le_to_lt % #len @(absurd …ltm) @le_to_not_lt @le_times_to_le_div //
141 (* integrare in div_and_mod *)
142 lemma lt_to_div_O:∀n,m. n < m → n / m = O.
143 #n #m #ltnm @(div_mod_spec_to_eq n m (n/m) (n \mod m) O n)
144 [@div_mod_spec_div_mod @(ltn_to_ltO ?? ltnm)
145 |@div_mod_spec_intro //
149 (* the value of n could be smaller *)
150 lemma k1: ∀n,p. 18 ≤ n → p ≤ n → 2*n/ 3 < p → k (2*n) p = O.
151 #n #p #le18 #lep #ltp >k_def
154 |#i #Hind >bigop_Strue
155 [>Hind <plus_n_O cases i
157 cut (2*n/p = 2) [2:#Hcut >Hcut //]
158 @lt_to_le_times_to_lt_S_to_div
159 [@(ltn_to_ltO ?? ltp)
160 |<commutative_times @monotonic_le_times_r //
161 |>commutative_times in ⊢ (??%); @lt_div_to_times //
163 |#n2 cut (2*n/(p)\sup(S (S n2)) = O) [2:#Hcut >Hcut //]
164 @lt_to_div_O @(le_to_lt_to_lt ? (exp ((2*n)/3) 2))
165 [@(le_times_to_le (exp 3 2))
167 |>commutative_times in ⊢ (??%); > times_exp
168 @(transitive_le ? (exp n 2))
169 [<associative_times >exp_2 in ⊢ (??%); @le_times [@le18|//]
170 |@(le_exp1 … (lt_O_S ?))
172 cut (3+2*n/3*3 = S(2*n/3)*3) [//] #eq1 >eq1
173 @(transitive_le ? (2*n))
174 [normalize in ⊢(??%); <plus_n_O
175 @monotonic_le_plus_l @(transitive_le ? 18 … le18)
177 |@lt_to_le @lt_div_S @lt_O_S
181 |@(lt_to_le_to_lt ? (exp p 2))
182 [@lt_exp1 [@lt_O_S|//]
183 |@le_exp [@(ltn_to_ltO ?? ltp) |@le_S_S @le_S_S @le_O_n]
192 theorem le_B1_theta:∀n.18 ≤ n → not_bertrand n →
193 B1 (2*n) ≤ theta (2 * n / 3).
194 #n #le18 #not_Bn >B1_def >theta_def
195 @(transitive_le ? (∏_{p < S (2*n) | primeb p} (p\sup(bool_to_nat (eqb (k (2*n) p) 1)))))
196 [@le_pi #p #ltp #primebp @le_exp
197 [@prime_to_lt_O @primeb_true_to_prime //
198 |cases (true_or_false (leb (k (2*n) p) 1)) #Hc
199 [cases (le_to_or_lt_eq ? ? (leb_true_to_le ?? Hc)) -Hc #Hc
200 [lapply (le_S_S_to_le ?? Hc) -Hc #Hc
201 @(le_n_O_elim ? Hc) <times_n_O @le_n
202 |>(eq_to_eqb_true ?? Hc) >Hc @le_n
207 |@(transitive_le ? (∏_{p < S (2*n/3) | primeb p} (p\sup(bool_to_nat (eqb (k (2*n) p) 1)))))
208 [>(pad_bigop_nil (S(2*n)) (S (2*n/3)) primeb ? 1 timesA) [//]
209 [#i #lei #lti whd in not_Bn;
210 cases (decidable_le (S n) i) #Hc
211 [%1 @not_prime_to_primeb_false @not_Bn [//|@le_S_S_to_le //]
212 |%2 >k1 // @not_lt_to_le @Hc
214 |@le_S_S @le_times_to_le_div2
216 |>commutative_times in ⊢ (??%); @le_times //
219 |@le_pi #i #lti #primei cases (eqb (k (2*n) i) 1)
221 |normalize @prime_to_lt_O @primeb_true_to_prime //
227 theorem le_B2_exp: ∀n. exp 2 7 ≤ n →
228 B2 (2*n) ≤ exp (2*n) (pred(sqrt(2*n)/2)).
230 cut (O < n) [@(lt_to_le_to_lt … len) @leb_true_to_le //] #posn
232 (∏_{p < S (sqrt (2*n)) | primeb p}
233 (p\sup(bool_to_nat (leb 2 (k (2*n) p))*k (2*n) p))))
234 [>(pad_bigop_nil (S (2*n)) (S(sqrt(2*n))) primeb ? 1 timesA)
235 [//|3: @le_S_S @le_sqrt_n]
236 #p #lep #ltp cases (true_or_false (leb 2 (k (2*n) p))) #Hc
237 [@False_ind @(absurd ?? (lt_to_not_le ?? lep))
238 @(true_to_le_max … ltp) @le_to_leb_true <exp_2
240 @(absurd ?? (le_to_not_lt 2 (log p (2*n)) ?))
241 [@le_S_S @f_false_to_le_max
243 [>(times_n_1 0) in ⊢ (?%?); >commutative_times in ⊢ (?%?);
245 |@le_to_leb_true @(transitive_le ? n) //
247 |#m #lt1m @lt_to_leb_false @(lt_to_le_to_lt … H2n)
248 @le_exp [@(ltn_to_ltO ?? lep) |//]
250 |@(transitive_le ? (k (2*n) p)) [@leb_true_to_le //|@le_k]
254 |@(transitive_le ? (∏_{p < S (sqrt (2*n)) | primeb p} (2*n)))
255 [@le_pi #p #ltp #primep @(transitive_le ? (exp p (log p (2*n))))
257 [@prime_to_lt_O @primeb_true_to_prime //
258 |cases (true_or_false (leb 2 (k (2*n) p))) #Hc >Hc
259 [>commutative_times <times_n_1 @le_k|@le_O_n]
261 |@le_exp_log >(times_n_O O) in ⊢ (?%?); @lt_times //
263 |@(transitive_le ? (exp (2*n) (prim(sqrt (2*n)))))
266 [>(times_n_O O) in ⊢ (?%?); @lt_times //
267 |@le_prim_n3 @true_to_le_max
268 [@(transitive_le ? (2*(exp 2 7)))
269 [@leb_true_to_le // |@le_S @monotonic_le_times_r //]
270 |@le_to_leb_true @(transitive_le ? (2*(exp 2 7)))
271 [@leb_true_to_le % | @monotonic_le_times_r //]
279 theorem not_bertrand_to_le_B:
280 ∀n.exp 2 7 ≤ n → not_bertrand n →
281 B (2*n) ≤ (exp 2 (2*(2 * n / 3)))*(exp (2*n) (pred(sqrt(2*n)/2))).
282 #n #len #notB >eq_B_Bk >eq_Bk_B1_B2 @le_times
283 [@(transitive_le ? (theta ((2*n)/3)))
284 [@le_B1_theta [@(transitive_le … len) @leb_true_to_le //|//]
292 theorem not_bertrand_to_le1:
293 \forall n.18 \le n \to not_bertrand n \to
294 exp 2 (2*n) \le (exp 2 (2*(2 * n / 3)))*(exp (2*n) (S(sqrt(2*n)))).
297 lemma le_times_div_m_m: ∀n,m. O < m → n/m*m ≤ n.
298 #n #m #posm >(div_mod n m) in ⊢ (??%); //
301 theorem not_bertrand_to_le1:
302 ∀n.exp 2 7 ≤ n → not_bertrand n →
303 exp 2 (2*n / 3) ≤ exp (2*n) (sqrt(2*n)/2).
304 #n #len #notB @(le_times_to_le (exp 2 (2*(2 * n / 3))))
306 |<exp_plus_times @(transitive_le ? (exp 2 (2*n)))
307 [@(le_exp … (lt_O_S ?))
308 cut (2*(2*n/3)+2*n/3 = 3*(2*n/3)) [//] #Heq >Heq
309 >commutative_times @le_times_div_m_m @lt_O_S
310 |@(transitive_le ? (2*n*B(2*n)))
311 [@le_exp_B @(transitive_le …len) @leb_true_to_le //
312 |<(S_pred (sqrt (2*n)/2))
313 [whd in ⊢ (??(??%)); <associative_times
314 <commutative_times in ⊢ (??%); @monotonic_le_times_r
315 @not_bertrand_to_le_B //
316 |@(le_times_to_le_div … (lt_O_S ?))
317 @(transitive_le ? (sqrt (exp 2 8)))
319 |@monotonic_sqrt >commutative_times @le_times //
327 theorem not_bertrand_to_le2:
328 ∀n.exp 2 7 ≤ n → not_bertrand n →
329 2*n / 3 ≤ (sqrt(2*n)/2)*S(log 2 (2*n)).
330 #n #len #notB <(eq_log_exp 2 (2*n/3) (le_n ?))
331 @(transitive_le ? (log 2 ((exp (2*n) (sqrt(2*n)/2)))))
332 [@le_log [@le_n|@not_bertrand_to_le1 //] |@log_exp1 @le_n]
335 lemma lt_div_S_div: ∀n,m. O < m → exp m 2 ≤ n →
337 #n #m #posm #len @lt_times_to_lt_div @(lt_to_le_to_lt ? (S(n/m)*m))
339 |<times_n_Sm >commutative_times <times_n_Sm >commutative_times @le_plus [2://]
340 @le_times_to_le_div //
344 lemma times_div_le: ∀a,b,c,d.O < b → O < d →
345 (a/b)*(c/d) ≤ (a*c)/(b*d).
346 #a #b #c #d #posa #posb @le_times_to_le_div
347 [>(times_n_O O) @lt_times //
348 |cut (∀n,m,p,q.n*m*(p*q) = p*n*(q*m)) [//] #Heq >Heq
353 lemma tech: ∀n. 2*(S(log 2 (2*n))) ≤ sqrt (2*n) →
354 (sqrt(2*n)/2)*S(log 2 (2*n)) ≤ 2*n / 4.
356 cut (4 = 2*2) [//] #H4
357 cut (4*(S(log 2 (2*n))) ≤ 2* sqrt(2*n))
358 [>H4 >associative_times @monotonic_le_times_r @H] #H1
359 >commutative_times @(le_times_to_le_div … (lt_O_S ?))
360 <associative_times @(transitive_le ? (2*sqrt(2*n)*(sqrt (2*n)/2)))
361 [@le_times [@H1|@le_n]
362 |@(transitive_le ? ((2*sqrt(2*n)*(sqrt(2*n))/2)))
363 [@le_times_div_div_times @lt_O_S
364 |>associative_times >commutative_times >(div_times … (lt_O_S …)) @leq_sqrt_n
369 (* we need a "good" lower bound for sqrt (2*n) *)
370 lemma exp_to_log_r : ∀b,n,m. 1 < b → n < m → exp b n ≤ m → n ≤ log b m.
371 #b #n #m #lt1b #ltnm #Hexp @true_to_le_max [@ltnm |@le_to_leb_true //]
374 lemma square_double :∀n. 2 < n → (S n)*(S n) ≤ 2*n*n.
375 #n #posn normalize <times_n_Sm <plus_n_O >(plus_n_O (n+(n+n*n)))
376 cut (S(n+(n+n*n)+0)=n*n+(n+(S n))) [//] #Hcut >Hcut >distributive_times_plus_r
377 @monotonic_le_plus_r <plus_n_Sm cut (n+n = 2*n) [//] #Hcut1 >Hcut1
378 @monotonic_lt_times_l [@(ltn_to_ltO … posn) |@posn]
381 lemma sqrt_bound: ∀n. exp 2 8 ≤ n → 2*(S(log 2 (2*n))) ≤ sqrt (2*n).
383 cut (8 ≤ log 2 n) [<(eq_log_exp 2 8) [@le_log [@le_n|@len]|@le_n]] #Hlog
384 cut (0<n) [@(lt_to_le_to_lt … len) @lt_O_S] #posn
385 >(exp_n_1 2) in ⊢ (? (? ? (? (? ? (? % ?)))) ?);
386 >(log_exp … (le_n ?) posn) >commutative_plus >plus_n_Sm @true_to_le_max
387 [@le_S_S @monotonic_le_times_r
388 cut (2<n) [@(lt_to_le_to_lt … len) @le_S_S @le_S_S @lt_O_S] #lt2n
389 elim lt2n [//] #m #lt2m #Hind
390 cut (0<m) [@(transitive_le … lt2m) @leb_true_to_le //] #posm
391 @(transitive_le ? (log 2 (2*m) +2))
392 [@le_plus [2://] @le_log [//] normalize <plus_n_O
393 >(plus_n_O m) in ⊢ (?%?); >plus_n_Sm @monotonic_le_plus_r //
394 |>(exp_n_1 2) in ⊢ (?(?(??%)?)?);>(log_exp … (le_n ?) posm) @le_S_S @Hind
396 |@le_to_leb_true >associative_times @monotonic_le_times_r
398 lapply len @(nat_elim1 n) #m #Hind #lem
399 cut (8<m) [@(transitive_le … lem) @leb_true_to_le //] #lt8m
400 cut (1<m) [@(transitive_le … lt8m) @leb_true_to_le //] #lt1m
401 cut (0<m) [@(transitive_le … lt1m) @leb_true_to_le //] #posm
402 cases (le_to_or_lt_eq … (le_exp_log 2 m posm)) #Hclog
403 [@(transitive_le … (le_exp_log 2 m posm))
404 lapply (Hind … Hclog ?) [@le_exp [@lt_O_S|@exp_to_log_r [@le_n|@lt8m|@lem]]]
405 -Hind #Hind @(transitive_le … Hind) >(eq_log_exp … (le_n ?)) @le_n
406 |cases (le_to_or_lt_eq … lem) -lem #Hcasem
407 [lapply (Hind (2^((log 2 m)-1)) ??)
408 [@le_exp [@lt_O_S] @le_plus_to_minus_r
409 @(lt_exp_to_lt 2 8) [@lt_O_S | >Hclog @Hcasem]
410 |<Hclog in ⊢ (??%); @(lt_exp … (le_n…)) whd >(plus_n_O (log 2 m -1))
411 >plus_n_Sm <plus_minus_m_m [@le_n | @lt_O_log @lt1m]
412 |-Hind #Hind lapply (le_times … Hind (le_n 2))
413 cut (∀a,b. a^(b+1) = a^b*a) [#a #b <plus_n_Sm <plus_n_O //] #exp_S
414 <exp_S <plus_minus_m_m [2:@lt_O_log //]
415 -Hind #Hind <Hclog @(transitive_le … Hind)
416 >(eq_log_exp … (le_n ?)) >(eq_log_exp … (le_n ?))
417 >plus_minus_associative [2:@lt_O_log //]
418 cut (2+3 ≤ 2+log 2 m)
419 [@monotonic_le_plus_r @(le_exp_to_le 2) [@le_n|>Hclog @lt_to_le @lt8m]]
420 generalize in match (2+log 2 m); #a #Hle >(commutative_times 2 a)
421 <associative_times @le_times [2://] <associative_times
422 >(commutative_times ? 2) lapply Hle cases a
423 [//| #a0 -Hle #Hle whd in match (S a0 -1); <(minus_n_O a0)
424 @square_double @le_S_S_to_le @lt_to_le @Hle]
426 |<Hcasem >(eq_log_exp … (le_n ?)) @leb_true_to_le %
433 ∀n. 2^8 ≤ n → bertrand n.
434 #n #len @not_not_bertrand_to_bertrand % #notBn
435 @(absurd (2*n / 3 \le (sqrt(2*n)/2)*S(log 2 (2*n))))
436 [@not_bertrand_to_le2
437 [@(transitive_le ???? len) @le_exp [@lt_O_S|@le_n_Sn]|//]
439 @(le_to_lt_to_lt ???? (lt_div_S_div ????))
440 [@tech @sqrt_bound //
441 |@(transitive_le ? (2*exp 2 8))
442 [@leb_true_to_le // |@monotonic_le_times_r //]
448 (* see Bertrand256 for the complete theorem *)