2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department of the University of Bologna, Italy.
8 \ / This file is distributed under the terms of the
9 \ / GNU General Public License Version 2
10 V_____________________________________________________________*)
12 include "arithmetics/chebyshev/chebyshev_psi.ma".
13 include "arithmetics/chebyshev/factorization.ma".
15 theorem le_B_Psi: ∀n. B n ≤ Psi n.
16 #n >eq_Psi_Psi' @le_pi #p #ltp #primep
17 @le_pi #i #lti #_ >(exp_n_1 p) in ⊢ (??%); @le_exp
18 [@prime_to_lt_O @primeb_true_to_prime //
19 |@le_S_S_to_le @lt_mod_m_m @lt_O_S
23 theorem le_B_Psi4: ∀n. O < n → 2 * B (4*n) ≤ Psi (4*n).
26 [@le_S_S >(times_n_1 2) in ⊢ (?%?); @le_times //] #H2
28 [@lt_O_log [@le_S_S_to_le @H2 |@le_S_S_to_le @H2]] #Hlog
29 >Bdef >(bigop_diff ??? timesAC ? 2 ? H2) [2:%]
30 >Psidef >(bigop_diff ??? timesAC ? 2 ? H2) in ⊢ (??%); [2:%]
31 <associative_times @le_times
32 [>(bigop_diff ??? timesAC ? 0 ? Hlog) [2://]
33 >(bigop_diff ??? timesAC ? 0 ? Hlog) in ⊢ (??%); [2:%]
34 <associative_times >timesACdef @le_times
35 [<exp_n_1 cut (4=2*2) [//] #H4 >H4 >associative_times
36 >commutative_times in ⊢ (?(??(??(?(?%?)?)))?);
37 >div_times [2://] >divides_to_mod_O
38 [@le_n |%{n} // |@lt_O_S]
39 |@le_pi #i #lti #H >(exp_n_1 2) in ⊢ (??%);
40 @le_exp [@lt_O_S |@le_S_S_to_le @lt_mod_m_m @lt_O_S]
42 |@le_pi #p #ltp #Hp @le_pi #i #lti #H
43 >(exp_n_1 p) in ⊢ (??%); @le_exp
44 [@prime_to_lt_O @primeb_true_to_prime @(andb_true_r ?? Hp)
45 |@le_S_S_to_le @lt_mod_m_m @lt_O_S
50 let rec bool_to_nat b ≝
51 match b with [true ⇒ 1 | false ⇒ 0].
53 theorem eq_Psi_2_n: ∀n.O < n →
55 ∏_{p <S (2*n) | primeb p}
56 (∏_{i <log p (2*n)} (exp p (bool_to_nat (leb (S n) (exp p (S i)))))) *Psi n.
57 #n #posn >eq_Psi_Psi' > eq_Psi_Psi'
59 ∏_{p < S n | primeb p} (∏_{i <log p n} p)
60 = ∏_{p < S (2*n) | primeb p}
61 (∏_{i <log p (2*n)} (p\sup(bool_to_nat (¬ (leb (S n) (exp p (S i))))))))
62 [2: #Hcut >Psidef in ⊢ (???%); >Hcut
63 <times_pi >Psidef @same_bigop
65 |#p #lt1p #primep <times_pi @same_bigop
67 |#i #lt1i #_ cases (true_or_false (leb (S n) (exp p (S i)))) #Hc >Hc
68 [normalize <times_n_1 >plus_n_O //
69 |normalize <plus_n_O <plus_n_O //
74 (∏_{p < S n | primeb p}
75 (∏_{i < log p n} (p \sup(bool_to_nat (¬leb (S n) (exp p (S i))))))))
78 |#p #lt1p #primep @same_bigop
80 |#i #lti#_ >lt_to_leb_false
82 |@le_S_S @(transitive_le ? (exp p (log p n)))
83 [@le_exp [@prime_to_lt_O @primeb_true_to_prime //|//]
90 (∏_{p < S (2*n) | primeb p}
91 (∏_{i <log p n} (p \sup(bool_to_nat (¬leb (S n) (p \sup(S i))))))))
92 [@(pad_bigop_nil … timesA)
93 [@le_S_S //|#i #lti #upi %2 >lt_to_log_O //]
96 |#p #ltp #primep @(pad_bigop_nil … timesA)
98 [@prime_to_lt_SO @primeb_true_to_prime //|//]
99 |#i #lei #iup %2 >le_to_leb_true
101 |@(lt_to_le_to_lt ? (exp p (S (log p n))))
102 [@lt_exp_log @prime_to_lt_SO @primeb_true_to_prime //
104 [@prime_to_lt_O @primeb_true_to_prime //
116 theorem le_Psi_BPsi1: ∀n. O < n →
117 Psi(2*n) ≤ B(2*n)*Psi n.
118 #n #posn >(eq_Psi_2_n … posn) @le_times [2:@le_n]
119 >Bdef @le_pi #p #ltp #primep @le_pi #i #lti #_ @le_exp
120 [@prime_to_lt_O @primeb_true_to_prime //
121 |cases (true_or_false (leb (S n) (exp p (S i)))) #Hc >Hc
123 cut (2*n/p\sup(S i) = 1) [2: #Hcut >Hcut @le_n]
124 @(div_mod_spec_to_eq (2*n) (exp p (S i))
125 ? (mod (2*n) (exp p (S i))) ? (minus (2*n) (exp p (S i))) )
126 [@div_mod_spec_div_mod @lt_O_exp @prime_to_lt_O @primeb_true_to_prime //
127 |cut (p\sup(S i)≤2*n)
128 [@(transitive_le ? (exp p (log p (2*n))))
129 [@le_exp [@prime_to_lt_O @primeb_true_to_prime // | //]
130 |@le_exp_log >(times_n_O O) in ⊢ (?%?); @lt_times //
135 [// |normalize in ⊢ (? % ?); < plus_n_O @lt_plus @leb_true_to_le //]
136 |>commutative_plus >commutative_times in ⊢ (???(??%));
137 < times_n_1 @plus_minus_m_m //
145 theorem le_Psi_BPsi: ∀n. Psi(2*n) \le B(2*n)*Psi n.
146 #n cases n [@le_n |#m @le_Psi_BPsi1 @lt_O_S]
149 theorem le_Psi_exp: ∀n. Psi(2*n) ≤ (exp 2 (pred (2*n)))*Psi n.
150 #n @(transitive_le ? (B(2*n)*Psi n))
151 [@le_Psi_BPsi |@le_times [@le_B_exp |//]]
154 theorem lt_4_to_le_Psi_exp: ∀n. 4 < n →
155 Psi(2*n) ≤ exp 2 ((2*n)-2)*Psi n.
156 #n #lt4n @(transitive_le ? (B(2*n)*Psi n))
157 [@le_Psi_BPsi|@le_times [@(lt_4_to_le_B_exp … lt4n) |@le_n]]
160 (* two technical lemmas *)
161 lemma times_2_pred: ∀n. 2*(pred n) \le pred (2*n).
163 [@le_n|#m @monotonic_le_plus_r @le_n_Sn]
166 lemma le_S_times_2: ∀n. O < n → S n ≤ 2*n.
170 cut (2*(S m) = S(S(2*m))) [normalize <plus_n_Sm //] #Hcut >Hcut
171 @le_S_S @(transitive_le … Hind) @le_n_Sn
175 theorem le_Psi_exp1: ∀n.
176 Psi(exp 2 n) ≤ exp 2 ((2*(exp 2 n)-(S(S n)))).
179 |#n1 #Hind whd in ⊢ (?(?%)?); >commutative_times
180 @(transitive_le ??? (le_Psi_exp ?))
181 @(transitive_le ? (2\sup(pred (2*2^n1))*2^(2*2^n1-(S(S n1)))))
182 [@monotonic_le_times_r //
183 |<exp_plus_times @(le_exp … (lt_O_S ?))
184 cut (S(S n1) ≤ 2*(exp 2 n1))
187 |#n2 >commutative_times in ⊢ (%→?); #Hind1 @(transitive_le ? (2*(S(S n2))))
188 [@le_S_times_2 @lt_O_S |@monotonic_le_times_r //]
191 @le_S_S_to_le cut(∀a,b. S a + b = S (a+b)) [//] #Hplus <Hplus >S_pred
192 [>eq_minus_S_pred in ⊢ (??%); >S_pred
193 [>plus_minus_associative
194 [@monotonic_le_minus_l
195 cut (∀a. 2*a = a + a) [//] #times2 <times2
196 @monotonic_le_times_r >commutative_times @le_n
199 |@lt_plus_to_minus_r whd in ⊢ (?%?);
200 @(lt_to_le_to_lt ? (2*(S(S n1))))
201 [>(times_n_1 (S(S n1))) in ⊢ (?%?); >commutative_times
202 @monotonic_lt_times_l [@lt_O_S |@le_n]
203 |@monotonic_le_times_r whd in ⊢ (??%); //
206 |whd >(times_n_1 1) in ⊢ (?%?); @le_times
207 [@le_n_Sn |@lt_O_exp @lt_O_S]
213 theorem monotonic_Psi: monotonic nat le Psi.
214 #n #m #lenm elim lenm
216 |#n1 #len #Hind @(transitive_le … Hind)
217 cut (∏_{p < S n1 | primeb p}(p^(log p n1))
218 ≤∏_{p < S n1 | primeb p}(p^(log p (S n1))))
219 [@le_pi #p #ltp #primep @le_exp
220 [@prime_to_lt_O @primeb_true_to_prime //
221 |@le_log [@prime_to_lt_SO @primeb_true_to_prime // | //]
224 >psi_def in ⊢ (??%); cases (true_or_false (primeb (S n1))) #Hc
225 [>bigop_Strue in ⊢ (??%); [2://]
226 >(times_n_1 (Psi n1)) >commutative_times @le_times
227 [@lt_O_exp @lt_O_S |@Hcut]
228 |>bigop_Sfalse in ⊢ (??%); //
234 example Psi_1: Psi 1 = 1. // qed.
236 example Psi_2: Psi 2 = 2. // qed.
238 example Psi_3: Psi 3 = 6. // qed.
240 example Psi_4: Psi 4 = 12. // qed.
242 theorem le_Psi_exp4: ∀n. 1 < n →
243 Psi(n) ≤ (pred n)*exp 2 ((2 * n) -3).
245 #m #Hind cases (even_or_odd m)
249 [whd in ⊢ (??%→?); #lt10 @False_ind @(absurd ? lt10 (not_le_Sn_O 1))
252 cases (le_to_or_lt_eq … Hcut) #Ha
253 [@(transitive_le ? (exp 2 (pred(2*a))*Psi a))
255 |@(transitive_le ? (2\sup(pred(2*a))*((pred a)*2\sup((2*a)-3))))
256 [@monotonic_le_times_r @(Hind ?? Ha)
257 >Hm >(times_n_1 a) in ⊢ (?%?); >commutative_times
258 @monotonic_lt_times_l [@lt_to_le // |@le_n]
259 |<Hm <associative_times >commutative_times in ⊢ (?(?%?)?);
260 >associative_times; @le_times
261 [>Hm cases a[@le_n|#b normalize @le_plus_n_r]
262 |<exp_plus_times @le_exp
264 |@(transitive_le ? (m+(m-3)))
265 [@monotonic_le_plus_l //
266 |normalize <plus_n_O >plus_minus_associative
268 |>Hm @(transitive_le ? (2*2) ? (le_n_Sn 3))
269 @monotonic_le_times_r //
278 |cases (le_to_or_lt_eq O a (le_O_n ?)) #Ha
279 [@(transitive_le ? (Psi (2*(S a))))
280 [@monotonic_Psi >Hm normalize <plus_n_Sm @le_n_Sn
281 |@(transitive_le … (le_Psi_exp ?) )
282 @(transitive_le ? ((2\sup(pred (2*S a)))*(a*(exp 2 ((2*(S a))-3)))))
283 [@monotonic_le_times_r @Hind
284 [>Hm @le_S_S >(times_n_1 a) in ⊢ (?%?); >commutative_times
285 @monotonic_lt_times_l //
288 |cut (pred (S (2*a)) = 2*a) [//] #Spred >Spred
289 cut (pred (2*(S a)) = S (2 * a)) [normalize //] #Spred1 >Spred1
290 cut (2*(S a) = S(S(2*a))) [normalize <plus_n_Sm //] #times2
291 cut (exp 2 (2*S a -3) = 2*(exp 2 (S(2*a) -3)))
292 [>(commutative_times 2) in ⊢ (???%); >times2 >minus_Sn_m [%]
293 @le_S_S >(times_n_1 2) in ⊢ (?%?); @monotonic_le_times_r @Ha
295 <associative_times in ⊢ (? (? ? %) ?); <associative_times
296 >commutative_times in ⊢ (? (? % ?) ?);
297 >commutative_times in ⊢ (? (? (? % ?) ?) ?);
298 >associative_times @monotonic_le_times_r
299 <exp_plus_times @(le_exp … (lt_O_S ?))
300 >plus_minus_associative
301 [normalize >(plus_n_O (a+(a+0))) in ⊢ (?(?(??%)?)?); @le_n
302 |@le_S_S >(times_n_1 2) in ⊢ (?%?); @monotonic_le_times_r @Ha
306 |@False_ind <Ha in Hlt; normalize #Hfalse @(absurd ? Hfalse) //
311 theorem le_n_8_to_le_Psi_exp: ∀n. n ≤ 8 →
312 Psi(n) ≤ exp 2 ((2 * n) -3).
320 [#_ @leb_true_to_le //
322 [#_ @leb_true_to_le //
324 [#_ @leb_true_to_le //
326 [#_ @leb_true_to_le //
328 [#_ @leb_true_to_le //
330 [#_ @leb_true_to_le //
331 |#n9 #H @False_ind @(absurd ?? (lt_to_not_le ?? H))
344 theorem le_Psi_exp5: ∀n. Psi(n) ≤ exp 2 ((2 * n) -3).
345 #n @(nat_elim1 n) #m #Hind
346 cases (decidable_le 9 m)
347 [#lem cases (even_or_odd m) #a * #Hm
348 [>Hm in ⊢ (?%?); @(transitive_le … (le_Psi_exp ?))
349 @(transitive_le ? (2\sup(pred(2*a))*(2\sup((2*a)-3))))
350 [@monotonic_le_times_r @Hind >Hm >(times_n_1 a) in ⊢ (?%?);
351 >commutative_times @(monotonic_lt_times_l … (le_n ?))
353 [@lt_O_S |@(le_times_to_le 2) [@lt_O_S |<Hm @lt_to_le @lem]]
354 |<Hm <exp_plus_times @(le_exp … (lt_O_S ?))
355 whd in match (times 2 m); >commutative_times <times_n_1
356 <plus_minus_associative
357 [@monotonic_le_plus_l @le_pred_n
358 |@(transitive_le … lem) @leb_true_to_le //
361 |@(transitive_le ? (Psi (2*(S a))))
362 [@monotonic_Psi >Hm normalize <plus_n_Sm @le_n_Sn
363 |@(transitive_le ? ((exp 2 ((2*(S a))-2))*Psi (S a)))
364 [@lt_4_to_le_Psi_exp @le_S_S
365 @(le_times_to_le 2)[@le_n_Sn|@le_S_S_to_le <Hm @lem]
366 |@(transitive_le ? ((2\sup((2*S a)-2))*(exp 2 ((2*(S a))-3))))
367 [@monotonic_le_times_r @Hind >Hm @le_S_S
368 >(times_n_1 a) in ⊢ (?%?);
369 >commutative_times @(monotonic_lt_times_l … (le_n ?))
371 [@lt_O_S |@(le_times_to_le 2) [@lt_O_S |@le_S_S_to_le <Hm @lem]]
372 |cut (∀a. 2*(S a) = S(S(2*a))) [normalize #a <plus_n_Sm //] #times2
373 >times2 <Hm <exp_plus_times @(le_exp … (lt_O_S ?))
378 |#n2 normalize <minus_n_O <plus_n_O <plus_n_Sm
379 normalize <minus_n_O <plus_n_Sm @le_n
386 |#H @le_n_8_to_le_Psi_exp @le_S_S_to_le @not_le_to_lt //
390 theorem le_exp_Psil:∀n. O < n → exp 2 n ≤ Psi (2 * n).
391 #n #posn @(transitive_le ? ((exp 2 (2*n))/(2*n)))
393 [>(times_n_O O) in ⊢ (?%?); @lt_times [@lt_O_S|//]
394 |normalize in ⊢ (??(??%)); < plus_n_O >exp_plus_times
395 @le_times [2://] elim posn [//]
396 #m #le1m #Hind whd in ⊢ (??%); >commutative_times in ⊢ (??%);
397 @monotonic_le_times_r @(transitive_le … Hind)
398 >(times_n_1 m) in ⊢ (?%?); >commutative_times
399 @(monotonic_lt_times_l … (le_n ?)) @le1m
401 |@le_times_to_le_div2
402 [>(times_n_O O) in ⊢ (?%?); @lt_times [@lt_O_S|//]
403 |@(transitive_le ? ((B (2*n)*(2*n))))
404 [<commutative_times in ⊢ (??%); @le_exp_B //
405 |@le_times [@le_B_Psi|@le_n]
411 theorem le_exp_Psi2:∀n. 1 < n → exp 2 (n / 2) \le Psi n.
412 #n #lt1n @(transitive_le ? (Psi(n/2*2)))
413 [>commutative_times @le_exp_Psil
414 cases (le_to_or_lt_eq ? ? (le_O_n (n/2))) [//]
415 #Heq @False_ind @(absurd ?? (lt_to_not_le ?? lt1n))
416 >(div_mod n 2) <Heq whd in ⊢ (?%?);
417 @le_S_S_to_le @(lt_mod_m_m n 2) @lt_O_S
418 |@monotonic_Psi >(div_mod n 2) in ⊢ (??%); @le_plus_n_r
422 theorem eq_sigma_pi_SO_n: ∀n.∑_{i < n} 1 = n.
426 theorem lePsi_prim: ∀n.
427 exp n (prim n) \le Psi n * ∏_{p < S n | primeb p} p.
428 #n <(exp_sigma (S n) n primeb) <times_pi @le_pi
429 #p #ltp #primep @lt_to_le @lt_exp_log
430 @prime_to_lt_SO @primeb_true_to_prime //
433 theorem le_prim_log : ∀n,b. 1 < b →
434 log b (Psi n) ≤ prim n * (S (log b n)).
435 #n #b #lt1b @(transitive_le … (log_exp1 …)) [@le_log // | //]
438 (*********************** the inequalities ***********************)
439 lemma exp_Sn: ∀b,n. exp b (S n) = b * (exp b n).
443 theorem le_exp_priml: ∀n. O < n →
444 exp 2 (2*n) ≤ exp (2*n) (S(prim (2*n))).
445 #n #posn @(transitive_le ? (((2*n*(B (2*n))))))
447 |>exp_Sn @monotonic_le_times_r @(transitive_le ? (Psi (2*n)))
448 [@le_B_Psi |@le_Psil]
452 theorem le_exp_prim4l: ∀n. O < n →
453 exp 2 (S(4*n)) ≤ exp (4*n) (S(prim (4*n))).
454 #n #posn @(transitive_le ? (2*(4*n*(B (4*n)))))
455 [>exp_Sn @monotonic_le_times_r
456 cut (4*n = 2*(2*n)) [<associative_times //] #Hcut
457 >Hcut @le_exp_B @lt_to_le whd >(times_n_1 2) in ⊢ (?%?);
458 @monotonic_le_times_r //
459 |>exp_Sn <associative_times >commutative_times in ⊢ (?(?%?)?);
460 >associative_times @monotonic_le_times_r @(transitive_le ? (Psi (4*n)))
461 [@le_B_Psi4 // |@le_Psil]
465 theorem le_priml: ∀n. O < n →
466 2*n ≤ (S (log 2 (2*n)))*S(prim (2*n)).
467 #n #posn <(eq_log_exp 2 (2*n) ?) in ⊢ (?%?);
468 [@(transitive_le ? ((log 2) (exp (2*n) (S(prim (2*n))))))
469 [@le_log [@le_n |@le_exp_priml //]
470 |>commutative_times in ⊢ (??%); @log_exp1 @le_n
476 theorem le_exp_primr: ∀n.
477 exp n (prim n) ≤ exp 2 (2*(2*n-3)).
478 #n @(transitive_le ? (exp (Psi n) 2))
479 [>exp_Sn >exp_Sn whd in match (exp ? 0); <times_n_1 @lePsi_r2
480 |>commutative_times <exp_exp_times @le_exp1 [@lt_O_S |@le_Psi_exp5]
485 theorem le_primr: ∀n. 1 < n → prim n \le 2*(2*n-3)/log 2 n.
486 #n #lt1n @le_times_to_le_div
488 |@(transitive_le ? (log 2 (exp n (prim n))))
489 [>commutative_times @log_exp2
490 [@le_n |@lt_to_le //]
491 |<(eq_log_exp 2 (2*(2*n-3))) in ⊢ (??%);
492 [@le_log [@le_n |@le_exp_primr]
499 theorem le_priml1: ∀n. O < n →
500 2*n/((log 2 n)+2) - 1 ≤ prim (2*n).
501 #n #posn @le_plus_to_minus @le_times_to_le_div2
502 [>commutative_plus @lt_O_S
503 |>commutative_times in ⊢ (??%); <plus_n_Sm <plus_n_Sm in ⊢ (??(??%));
504 <plus_n_O <commutative_plus <log_exp
505 [@le_priml // | //| @le_n]