]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/lib/arithmetics/ord.ma
Porting chebyshev
[helm.git] / matita / matita / lib / arithmetics / ord.ma
1 (*
2     ||M||  This file is part of HELM, an Hypertextual, Electronic   
3     ||A||  Library of Mathematics, developed at the Computer Science 
4     ||T||  Department of the University of Bologna, Italy.           
5     ||I||                                                            
6     ||T||  
7     ||A||  
8     \   /  This file is distributed under the terms of the       
9      \ /   GNU General Public License Version 2   
10       V_____________________________________________________________*)
11
12 include "arithmetics/exp.ma".
13 include "basics/types.ma".
14 include "arithmetics/primes.ma".
15 include "arithmetics/gcd.ma". 
16 (*
17 include "arithmetics/nth_prime.ma".
18 (* for some properties of divides *)
19 *)
20
21 let rec p_ord_aux p n m ≝
22   match n \mod m with
23   [ O ⇒ 
24     match p with
25       [ O ⇒ 〈O,n〉
26       | S p ⇒ let 〈q,r〉 ≝ p_ord_aux p (n / m) m in 〈S q,r〉]
27   | S a ⇒ 〈O,n〉].
28  
29 (* p_ord n m = <q,r> if m divides n q times, with remainder r *)
30 definition p_ord ≝ λn,m:nat.p_ord_aux n n m.
31
32 lemma p_ord_aux_0: ∀n,m.p_ord_aux 0 n m = 〈0,n〉.
33 #n #m whd in match (p_ord_aux 0??); cases (n\mod m) normalize //
34 qed. 
35
36 lemma p_ord_aux_Strue: ∀n,m,p,q,r.
37  n\mod m = 0 → p_ord_aux p (n / m) m = 〈q,r〉 →
38  p_ord_aux (S p) n m = 〈S q,r〉.
39 #n #m #p #q #r whd in match (p_ord_aux (S p)??); #H >H 
40 #Hord whd in ⊢(??%?); >Hord //
41 qed. 
42
43 lemma p_ord_aux_false: ∀p,n,m,a.
44  n\mod m = (S a) → p_ord_aux p n m = 〈0,n〉.
45 #p #n #m #a cases p whd in match (p_ord_aux ???); 
46   [#H whd in match (p_ord_aux ???); >H // 
47   |#p1 #H whd in match (p_ord_aux ???); >H //
48   ] 
49 qed. 
50
51 (* the definition of p_ord_aux only makes sense for m>1. 
52    In case m=1 we always end up with the pair 〈p,n〉 *)
53
54 lemma p_ord_degenerate: ∀p,n. p_ord_aux p n 1 = 〈p,n〉.
55 #p elim p // #p1 #Hind #n
56 cut (mod n 1 = 0) [@divides_to_mod_O //] #Hmod
57 >(p_ord_aux_Strue … (Hind … ) ) // >(div_mod n 1) in ⊢ (???%);
58 >Hmod <plus_n_O <times_n_1 //
59 qed.
60
61 theorem p_ord_aux_to_exp: ∀p,n,m,q,r. O < m →
62   p_ord_aux p n m = 〈q,r〉 → n = m \sup q *r .
63 #p elim p
64   [#n #m @(nat_case (n \mod m))
65     [#Hmod #q #r #posm >p_ord_aux_0 #Hqr destruct (Hqr) //
66     |#a #H #q #r #posm >(p_ord_aux_false … H) #Hqr destruct (Hqr) //
67     ]
68   |#p1 #Hind #n #m @(nat_case (n \mod m))
69     [#Hmod #q #r #posm lapply (refl …(p_ord_aux p1 (n/m) m));
70      cases (p_ord_aux p1 (n/m) m) in ⊢ (???%→?); #q1 #r1 #H1
71      >(p_ord_aux_Strue … Hmod H1) #H destruct (H) whd in match (exp ??);
72      >(div_mod n m) >Hmod <plus_n_O >(Hind … H1) //
73     |#a #H #q #r #posm >(p_ord_aux_false … H) #Hqr destruct (Hqr) //
74     ]
75   ]
76 qed.
77
78 (* questo va spostato in primes1.ma *)
79 theorem p_ord_exp: ∀n,m,i. O < m → n \mod m ≠ O →
80   ∀p. i ≤ p → p_ord_aux p (m \sup i * n) m = 〈i,n〉.
81 #n #m #i #posm #Hmod 
82 cut (∃a.n\mod m = S a)
83   [@(nat_case (n\mod m)) [#H @False_ind /2/|#a #Hmod1 %{a} //]] * #mod1 #Hmod1
84 elim i
85   [#p normalize #posp <plus_n_O @(p_ord_aux_false … Hmod1)
86   |-i #i #Hind #p 
87    @(nat_case p) [#Hp >Hp #Habs @False_ind @(absurd … Habs) //]
88    #p1 #Hp1 #lep1
89    cut (((m \sup (S i)*n) \mod m) = O)
90     [whd in match (exp ??); @divides_to_mod_O // %{(m^i*n)} //] #Hmod2
91    @(p_ord_aux_Strue … Hmod2) <(Hind p1) [2: @le_S_S_to_le //]
92    @eq_f2 // whd in match (exp ??); >associative_times >(commutative_times m)
93    <associative_times >div_times //
94   ]
95 qed.
96
97 theorem p_ord_aux_to_not_mod_O: ∀p,n,m,q,r. 1<m → O<n → n≤p →
98   p_ord_aux p n m = 〈q,r〉 → r \mod m ≠ O.
99 #p elim p
100   [#n #m #q #r #_ #posn #nposn @False_ind @(absurd … posn) /2/  
101   |#p1 #Hind #n #m @(nat_case (n \mod m))
102     [#Hmod #q #r #lt1m #posn #len lapply (refl …(p_ord_aux p1 (n/m) m));
103      cases (p_ord_aux p1 (n/m) m) in ⊢ (???%→?); #q1 #r1 #H1
104      >(p_ord_aux_Strue … Hmod H1) #H destruct (H) whd in match (exp ??);
105      @(Hind … lt1m … H1) 
106       [@(pos_div … posn Hmod) @lt_to_le //
107       |@le_S_S_to_le @(transitive_le … len) @lt_times_to_lt_div
108        >(times_n_1 n) in ⊢ (?%?); @monotonic_lt_times_r //
109       ]
110     |#a #H #q #r #lt1m #posn #posm >(p_ord_aux_false … H) #Hqr destruct (Hqr)
111      >H @sym_not_eq //
112     ]
113   ]
114 qed.
115
116 theorem p_ord_exp1: ∀p,n,q,r. O < p → p ∤ r →
117   n = p \sup q * r → p_ord n p = 〈q,r〉.
118 #p #n #q #r #posp #ndivpr #Hn >Hn -Hn -n @(p_ord_exp … posp)
119   [@(not_to_not … ndivpr) /2/
120   |@(transitive_le ? (p \sup q))
121     [cut (1<p) 
122       [cases (le_to_or_lt_eq … posp) // #eqp1 @False_ind @(absurd ?? ndivpr)
123        <eqp1 % //]
124      #lt1p elim q // -q #q whd in match (exp ??);
125      cases q [#_ normalize <plus_n_O @lt_to_le //]
126      #q1 #Hind @(lt_to_le_to_lt ? ((S q1)*2))
127       [>(times_n_1 (S q1)) in ⊢ (?%?); @monotonic_lt_times_r //
128       |@le_times //
129       ]
130     |>(times_n_1 (p^q)) in ⊢ (?%?); @le_times // 
131      lapply ndivpr -ndivpr cases r // #Habs @False_ind @(absurd ?? Habs) % //
132     ]
133   ]
134 qed.
135
136 theorem p_ord_to_exp1: ∀p,n,q,r. 1<p → O<n → p_ord n p = 〈q,r〉 → 
137   p ∤ r ∧ n = p \sup q * r.
138 #p #n #q #r #lt1p #posn #Hord %
139   [@(not_to_not … (p_ord_aux_to_not_mod_O … lt1p posn (le_n n)… Hord))
140    @divides_to_mod_O @lt_to_le //
141   |@(p_ord_aux_to_exp n …Hord) @lt_to_le //
142   ]
143 qed.
144
145 theorem eq_p_ord_q_O: ∀p,n,q. p_ord n p = 〈q,O〉 → n=O ∧ q=O.
146 #p #n whd in match (p_ord ??);  cases n 
147   [#q cases p normalize [|#q1] #H destruct (H) % //
148   |#n1 #q cases p 
149     [normalize #H destruct (H) 
150     |#p1 cases p1
151       [>p_ord_degenerate #H destruct (H)
152       |#p2 lapply (refl …(p_ord_aux (S n1) (S n1) (S (S p2))));
153        cases (p_ord_aux (S n1) (S n1) (S (S p2))) in ⊢ (???%→?); #qa #ra #H 
154        lapply (p_ord_to_exp1 (S (S p2)) (S n1) … H) //
155        * #_ #H1 >H #H2 @False_ind destruct (H2) <times_n_O in H1; 
156        #Habs destruct (Habs)
157       ]
158     ]
159   ]
160 qed.
161
162 theorem p_ord_times: ∀p,a,b,qa,ra,qb,rb. prime p → O < a → O < b 
163  → p_ord a p = 〈qa,ra〉  → p_ord b p = 〈qb,rb〉
164   → p_ord (a*b) p = 〈qa + qb, ra*rb〉.
165 #p #a #b #qa #ra #qb #rb #Hprime #posa #posb #porda #pordb 
166 cut (1<p) [@prime_to_lt_SO //] #Hp1
167 cases (p_ord_to_exp1 ???? Hp1 posa porda) -posa -porda #Hdiva #Ha
168 elim (p_ord_to_exp1 ???? Hp1 posb pordb) -posb -pordb #Hdivb #Hb
169 @p_ord_exp1 
170   [@lt_to_le //
171   |% #Hdiv cases (divides_times_to_divides ? ? ? Hprime Hdiv)
172    #Habs @absurd /2/
173   |>Ha >Hb -Ha -Hb <associative_times <associative_times // 
174   ]
175 qed.
176
177 theorem fst_p_ord_times: ∀p,a,b. prime p → O < a → O < b → 
178   fst ?? (p_ord (a*b) p) = (fst ?? (p_ord a p)) + (fst ?? (p_ord b p)).
179 #p #a #b #primep #posa #posb
180 >(p_ord_times p a b (fst ?? (p_ord a p)) (snd ?? (p_ord a p))
181   (fst ?? (p_ord b p)) (snd ? ? (p_ord b p)) primep posa posb) //
182 qed.
183
184 theorem p_ord_p: ∀p:nat. 1 < p → p_ord p p = 〈1,1〉.
185 #p #ltp1 @p_ord_exp1
186   [@lt_to_le //
187   |% #divp1 @(absurd … ltp1) @le_to_not_lt @divides_to_le //
188   |//
189   ]
190 qed.
191
192 (* p_ord and divides *)
193 theorem divides_to_p_ord: ∀p,a,b,c,d,n,m:nat. O < n → O < m → prime p 
194 → divides n m → p_ord n p = 〈a,b〉 →
195   p_ord m p = 〈c,d〉 → divides b d ∧ a ≤ c.
196 #p #a #b #c #d #n #m #posn #posm #primep #divnm #ordn #ordm
197 cut (1<p) [@prime_to_lt_SO //] #Hposp
198 cases (p_ord_to_exp1 ? ? ? ? Hposp posn ordn) #divn #eqn
199 cases (p_ord_to_exp1 ? ? ? ? Hposp posm ordm) #divm #eqm %
200   [@(gcd_1_to_divides_times_to_divides b (exp p c))
201     [cases (le_to_or_lt_eq ?? (le_O_n b)) //
202     |elim c 
203       [>commutative_gcd //
204       |#c0 #Hind @eq_gcd_times_1 
205         [@lt_O_exp @lt_to_le //
206         |@lt_to_le //
207         |@Hind 
208         |>commutative_gcd @prime_to_gcd_1 //
209         ] 
210       ]
211     |@(transitive_divides ? n) [%{(exp p a)} // |<eqm //]
212     ]
213   |@(le_exp_to_le p) //
214    @divides_to_le
215     [@lt_O_exp @lt_to_le // 
216     |@(gcd_1_to_divides_times_to_divides ? d)
217       [@lt_O_exp @lt_to_le // 
218       |elim a
219         [@gcd_SO_n
220         |#a0 #Hind whd in match (exp ??); 
221          >commutative_gcd @eq_gcd_times_1
222           [@lt_O_exp @lt_to_le // 
223           |@lt_to_le //
224           |>commutative_gcd //
225           |>commutative_gcd @prime_to_gcd_1 //
226           ]
227         ]
228       |@(transitive_divides ? n) // %{b} // 
229       ]
230     ]
231   ]
232 qed.    
233
234 (* p_ord and primes *)
235 theorem not_divides_to_p_ord_O: ∀n,i.
236   (nth_prime i) ∤ n → p_ord n (nth_prime i) = 〈O,n〉.
237 #n #i #H @p_ord_exp1 //
238 qed.
239
240 theorem p_ord_O_to_not_divides: ∀n,i,r. O < n →
241   p_ord n (nth_prime i) = 〈O,r〉
242   → (nth_prime i) ∤ n.
243 #n #i #r #posn #Hord
244 lapply (p_ord_to_exp1 … Hord) // * #H 
245 normalize <plus_n_O // 
246 qed.
247
248 theorem p_ord_to_not_eq_O : ∀n,p,q,r. 1<n →
249   p_ord n (nth_prime p) = 〈q,r〉 → r≠O.
250 #n #p #q #r #lt1n #Hord
251 cut (O<n) [@lt_to_le //] #posn
252 lapply (p_ord_to_exp1 …posn … Hord)
253   [@lt_SO_nth_prime_n 
254   |* #H1 #H2 @(not_to_not …(lt_to_not_eq … posn))
255    #eqr >eqr in H2; //
256   ]
257 qed.
258
259 definition ord :nat → nat → nat ≝
260   λn,p. fst ?? (p_ord n p).
261
262 definition ord_rem :nat → nat → nat ≝
263   λn,p. snd ?? (p_ord n p).
264
265 lemma ord_eq: ∀n,p. ord n p = fst ?? (p_ord n p). //
266 qed.
267
268 lemma ord_rem_eq: ∀n,p. ord_rem n p = snd ?? (p_ord n p). //
269 qed.
270
271 theorem divides_to_ord: ∀p,n,m:nat. 
272   O < n → O < m → prime p → divides n m 
273   → divides (ord_rem n p) (ord_rem m p) ∧ (ord n p) ≤ (ord m p).  
274 #p #n #m #H #H1 #H2 #H3
275 @(divides_to_p_ord p ? ? ? ? n m H H1 H2 H3) 
276   [@eq_pair_fst_snd|@eq_pair_fst_snd]
277 qed.
278
279 theorem divides_to_divides_ord_rem: ∀p,n,m:nat. 
280 O < n → O < m → prime p → divides n m →
281   divides (ord_rem n p) (ord_rem m p).
282 #p #n #m #H #H1 #H2 #H3 cases (divides_to_ord p n m H H1 H2 H3) // 
283 qed.
284
285 theorem divides_to_le_ord: ∀p,n,m:nat. 
286 O < n → O < m → prime p → divides n m →
287   ord n p ≤ ord m p.  
288 #p #n #m #H #H1 #H2 #H3 cases (divides_to_ord p n m H H1 H2 H3) //
289 qed.
290
291 theorem exp_ord: \forall p,n. 1 < p → O < n → 
292   n = p \sup (ord n p) * (ord_rem n p).
293 #p #n #H #H1
294 cases (p_ord_to_exp1 p n (ord n p) (ord_rem n p) H H1 ?)
295   [// |@eq_pair_fst_snd]
296 qed.
297
298 theorem divides_ord_rem: ∀p,n. 1 < p → O < n 
299   → divides (ord_rem n p) n. 
300 #p #n #H #H1 %{(p \sup (ord n p))} >commutative_times @exp_ord // 
301 qed.
302
303 theorem lt_O_ord_rem: ∀p,n. 1 < p → O < n → O < ord_rem n p. 
304 #p #n #H #H1 
305 cases (le_to_or_lt_eq … (le_O_n (ord_rem n p))) //
306 #remO lapply(divides_ord_rem ?? H H1) <remO -remO #Hdiv0  
307 @False_ind @(absurd (0=n)) [cases Hdiv0 // | @lt_to_not_eq //]
308 qed.
309
310 (* properties of ord e ord_rem *)
311
312 theorem ord_times: ∀p,m,n.O<m → O<n → prime p →
313   ord (m*n) p = ord m p+ord n p.
314 #p #m #n #H #H1 #H2 
315 lapply (p_ord_times ??? (ord m p) (ord_rem m p) (ord n p) (ord_rem n p) H2 H H1 
316   (eq_pair_fst_snd …) (eq_pair_fst_snd …)) #H3
317   @(eq_f … (fst …) … H3)
318 qed.
319
320 theorem ord_exp: ∀p,m. 1 < p → ord (exp p m) p = m.
321 #p #m #H >ord_eq >(p_ord_exp1 p (exp p m) m (S O)) //
322   [@(not_to_not … (lt_to_not_le … H)) @divides_to_le //
323   |@lt_to_le // 
324   ]
325 qed.
326
327 theorem not_divides_to_ord_O: 
328 ∀p,m. prime p → p ∤ m → ord m p = O.
329 #p #m #H #H1 >ord_eq >(p_ord_exp1 p m O m) // @prime_to_lt_O //
330 qed.
331
332 theorem ord_O_to_not_divides: ∀p,m. O < m → prime p → 
333   ord m p = O → p ∤ m.
334 #p #m #H #H1 #H2 
335 lapply (p_ord_to_exp1 p m (ord m p) (ord_rem m p) … H … (eq_pair_fst_snd …))
336   [@prime_to_lt_SO //
337   |* #H3 >H2 >commutative_times <times_n_1 //  
338   ]
339 qed.
340
341 theorem divides_to_not_ord_O: 
342 ∀p,m. O < m → prime p → divides p m →
343   ord m p ≠ O.
344 #p #m #H #H1 #H2 % #H3 @(absurd … H2) @(ord_O_to_not_divides ? ? H H1 H3)
345 qed.
346
347 theorem not_ord_O_to_divides: 
348 ∀p,m. O < m → prime p → (ord m p ≠ O) → divides p m.
349 #p #m #H #H1 #H2  >(exp_ord p m) in ⊢ (??%);
350   [@(transitive_divides ? (exp p (ord m p)))
351     [lapply H2 cases (ord m p) 
352       [* #H3 @False_ind @H3 // 
353       |#a #_ normalize % // 
354       ]
355     |%{(ord_rem m p)} //
356     ]
357   |//
358   |@prime_to_lt_SO //
359   ]
360 qed.
361
362 theorem not_divides_ord_rem: ∀m,p.O< m → 1 < p →
363   p ∤  (ord_rem m p).
364 #m #p #H #H1 
365 lapply (p_ord_to_exp1 p m (ord m p) (ord_rem m p) ?? (eq_pair_fst_snd …)) // *
366 #H2 #H3 @H2
367 qed.
368
369 theorem ord_ord_rem: ∀p,q,m. O < m → prime p → prime q →q < p → 
370   ord (ord_rem m p) q = ord m q.
371 #p #q #m #H #H1 #H2 #H3 >(exp_ord p m) in ⊢ (???(?%?));
372   [>(ord_times … H2)
373     [>not_divides_to_ord_O in ⊢ (???(?%?)); //
374      @(not_to_not … (lt_to_not_eq ? ? H3))
375      @(divides_exp_to_eq ? ? ? H2 H1)
376     |@lt_O_ord_rem // @prime_to_lt_SO //
377     |@lt_O_exp @prime_to_lt_O //
378     ]
379   |//
380   |@prime_to_lt_SO //
381   ]
382 qed.
383
384 theorem lt_ord_rem: ∀n,m. prime n → O < m →
385   divides n m → ord_rem m n < m.
386 #n #m #H #H1 #H2 
387 cases (le_to_or_lt_eq (ord_rem m n) m ?) 
388   [//
389   |#Hm @False_ind <Hm in H2; #Habs @(absurd ? Habs)
390    @not_divides_ord_rem // @prime_to_lt_SO //
391   |@divides_to_le //
392    @divides_ord_rem // @prime_to_lt_SO //
393   ]
394 qed.
395
396 (* p_ord_inv may be used to encode the pair ord and rem into 
397    a single natural number. *)
398  
399 definition p_ord_inv ≝ λp,m,x. 
400   let 〈q,r〉 ≝ p_ord x p in r*m+q.
401   
402 theorem  eq_p_ord_inv: ∀p,m,x.
403   p_ord_inv p m x = (ord_rem x p)*m+(ord x p).
404 #p #m #x normalize cases(p_ord_aux x x p) // 
405 qed.
406
407 theorem div_p_ord_inv: 
408 ∀p,m,x. ord x p < m → p_ord_inv p m x / m = ord_rem x p.
409 #p #m #x >eq_p_ord_inv @div_plus_times
410 qed.
411
412 theorem mod_p_ord_inv: 
413 ∀p,m,x. ord x p < m → p_ord_inv p m x \mod m = ord x p.
414 #p #m #x >eq_p_ord_inv @mod_plus_times
415 qed.