2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department of the University of Bologna, Italy.
8 \ / This file is distributed under the terms of the
9 \ / GNU General Public License Version 2
10 V_______________________________________________________________ *)
12 include "basics/types.ma".
13 include "arithmetics/nat.ma".
15 inductive list (A:Type[0]) : Type[0] :=
17 | cons: A -> list A -> list A.
19 notation "hvbox(hd break :: tl)"
20 right associative with precedence 47
23 notation "[ list0 term 19 x sep ; ]"
24 non associative with precedence 90
25 for ${fold right @'nil rec acc @{'cons $x $acc}}.
27 notation "hvbox(l1 break @ l2)"
28 right associative with precedence 47
29 for @{'append $l1 $l2 }.
31 interpretation "nil" 'nil = (nil ?).
32 interpretation "cons" 'cons hd tl = (cons ? hd tl).
34 definition is_nil: ∀A:Type[0].list A → Prop ≝
35 λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ].
38 ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ [].
39 #A #l #a @nmk #Heq (change with (is_nil ? (a::l))) >Heq //
43 let rec id_list A (l: list A) on l :=
46 | (cons hd tl) => hd :: id_list A tl ]. *)
48 let rec append A (l1: list A) l2 on l1 ≝
51 | cons hd tl ⇒ hd :: append A tl l2 ].
53 definition hd ≝ λA.λl: list A.λd:A.
54 match l with [ nil ⇒ d | cons a _ ⇒ a].
56 definition tail ≝ λA.λl: list A.
57 match l with [ nil ⇒ [] | cons hd tl ⇒ tl].
59 definition option_hd ≝
60 λA.λl:list A. match l with
62 | cons a _ ⇒ Some ? a ].
64 interpretation "append" 'append l1 l2 = (append ? l1 l2).
66 theorem append_nil: ∀A.∀l:list A.l @ [] = l.
67 #A #l (elim l) normalize // qed.
69 theorem associative_append:
70 ∀A.associative (list A) (append A).
71 #A #l1 #l2 #l3 (elim l1) normalize // qed.
73 theorem append_cons:∀A.∀a:A.∀l,l1.l@(a::l1)=(l@[a])@l1.
74 #A #a #l #l1 >associative_append // qed.
76 theorem nil_append_elim: ∀A.∀l1,l2: list A.∀P:?→?→Prop.
77 l1@l2=[] → P (nil A) (nil A) → P l1 l2.
78 #A #l1 #l2 #P (cases l1) normalize //
82 theorem nil_to_nil: ∀A.∀l1,l2:list A.
83 l1@l2 = [] → l1 = [] ∧ l2 = [].
84 #A #l1 #l2 #isnil @(nil_append_elim A l1 l2) /2/
87 lemma cons_injective_l : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → a1 = a2.
88 #A #a1 #a2 #l1 #l2 #Heq destruct //
91 lemma cons_injective_r : ∀A.∀a1,a2:A.∀l1,l2.a1::l1 = a2::l2 → l1 = l2.
92 #A #a1 #a2 #l1 #l2 #Heq destruct //
97 definition option_cons ≝ λsig.λc:option sig.λl.
98 match c with [ None ⇒ l | Some c0 ⇒ c0::l ].
100 lemma opt_cons_tail_expand : ∀A,l.l = option_cons A (option_hd ? l) (tail ? l).
104 (* comparing lists *)
106 lemma compare_append : ∀A,l1,l2,l3,l4. l1@l2 = l3@l4 →
107 ∃l:list A.(l1 = l3@l ∧ l4=l@l2) ∨ (l3 = l1@l ∧ l2=l@l4).
109 [#l2 #l3 #l4 #Heq %{l3} %2 % // @Heq
110 |#a1 #tl1 #Hind #l2 #l3 cases l3
111 [#l4 #Heq %{(a1::tl1)} %1 % // @sym_eq @Heq
112 |#a3 #tl3 #l4 normalize in ⊢ (%→?); #Heq cases (Hind l2 tl3 l4 ?)
113 [#l * * #Heq1 #Heq2 %{l}
114 [%1 % // >Heq1 >(cons_injective_l ????? Heq) //
115 |%2 % // >Heq1 >(cons_injective_l ????? Heq) //
117 |@(cons_injective_r ????? Heq)
123 (**************************** iterators ******************************)
125 let rec map (A,B:Type[0]) (f: A → B) (l:list A) on l: list B ≝
126 match l with [ nil ⇒ nil ? | cons x tl ⇒ f x :: (map A B f tl)].
128 lemma map_append : ∀A,B,f,l1,l2.
129 (map A B f l1) @ (map A B f l2) = map A B f (l1@l2).
132 | #h #t #IH #l2 normalize //
135 let rec foldr (A,B:Type[0]) (f:A → B → B) (b:B) (l:list A) on l :B ≝
136 match l with [ nil ⇒ b | cons a l ⇒ f a (foldr A B f b l)].
140 foldr T (list T) (λx,l0.if p x then x::l0 else l0) (nil T).
142 (* compose f [a1;...;an] [b1;...;bm] =
143 [f a1 b1; ... ;f an b1; ... ;f a1 bm; f an bm] *)
145 definition compose ≝ λA,B,C.λf:A→B→C.λl1,l2.
146 foldr ?? (λi,acc.(map ?? (f i) l2)@acc) [ ] l1.
148 lemma filter_true : ∀A,l,a,p. p a = true →
149 filter A p (a::l) = a :: filter A p l.
150 #A #l #a #p #pa (elim l) normalize >pa normalize // qed.
152 lemma filter_false : ∀A,l,a,p. p a = false →
153 filter A p (a::l) = filter A p l.
154 #A #l #a #p #pa (elim l) normalize >pa normalize // qed.
156 theorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l.
157 #A #B #f #g #l #eqfg (elim l) normalize // qed.
159 (**************************** reverse *****************************)
160 let rec rev_append S (l1,l2:list S) on l1 ≝
163 | cons a tl ⇒ rev_append S tl (a::l2)
167 definition reverse ≝λS.λl.rev_append S l [].
169 lemma reverse_single : ∀S,a. reverse S [a] = [a].
172 lemma rev_append_def : ∀S,l1,l2.
173 rev_append S l1 l2 = (reverse S l1) @ l2 .
174 #S #l1 elim l1 normalize //
177 lemma reverse_cons : ∀S,a,l. reverse S (a::l) = (reverse S l)@[a].
178 #S #a #l whd in ⊢ (??%?); //
181 lemma reverse_append: ∀S,l1,l2.
182 reverse S (l1 @ l2) = (reverse S l2)@(reverse S l1).
183 #S #l1 elim l1 [normalize // | #a #tl #Hind #l2 >reverse_cons
184 >reverse_cons // qed.
186 lemma reverse_reverse : ∀S,l. reverse S (reverse S l) = l.
187 #S #l elim l // #a #tl #Hind >reverse_cons >reverse_append
190 (* an elimination principle for lists working on the tail;
191 useful for strings *)
192 lemma list_elim_left: ∀S.∀P:list S → Prop. P (nil S) →
193 (∀a.∀tl.P tl → P (tl@[a])) → ∀l. P l.
194 #S #P #Pnil #Pstep #l <(reverse_reverse … l)
195 generalize in match (reverse S l); #l elim l //
196 #a #tl #H >reverse_cons @Pstep //
199 (**************************** length ******************************)
201 let rec length (A:Type[0]) (l:list A) on l ≝
204 | cons a tl ⇒ S (length A tl)].
206 interpretation "list length" 'card l = (length ? l).
208 lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l).
212 lemma length_tail1 : ∀A,l.0 < |l| → |tail A l| < |l|.
216 lemma length_append: ∀A.∀l1,l2:list A.
218 #A #l1 elim l1 // normalize /2/
221 lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l.
222 #A #B #l #f elim l // #a #tl #Hind normalize //
225 lemma length_reverse: ∀A.∀l:list A.
227 #A #l elim l // #a #l0 #IH >reverse_cons >length_append normalize //
230 lemma lenght_to_nil: ∀A.∀l:list A.
232 #A * // #a #tl normalize #H destruct
235 lemma lists_length_split :
236 ∀A.∀l1,l2:list A.(∃la,lb.(|la| = |l1| ∧ l2 = la@lb) ∨ (|la| = |l2| ∧ l1 = la@lb)).
238 [ #l2 %{[ ]} %{l2} % % %
240 [ %{[ ]} %{(hd1::tl1)} %2 % %
241 | #hd2 #tl2 cases (IH tl2) #x * #y *
242 [ * #IH1 #IH2 %{(hd2::x)} %{y} % normalize % //
243 | * #IH1 #IH2 %{(hd1::x)} %{y} %2 normalize % // ]
248 (****************** traversing two lists in parallel *****************)
250 ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:list T1 → list T2 → Prop.
251 length ? l1 = length ? l2 →
253 (∀tl1,tl2,hd1,hd2. P tl1 tl2 → P (hd1::tl1) (hd2::tl2)) →
255 #T1 #T2 #l1 #l2 #P #Hl #Pnil #Pcons
256 generalize in match Hl; generalize in match l2;
258 [#l2 cases l2 // normalize #t2 #tl2 #H destruct
259 |#t1 #tl1 #IH #l2 cases l2
260 [normalize #H destruct
261 |#t2 #tl2 #H @Pcons @IH normalize in H; destruct // ]
266 ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:Prop.
267 length ? l1 = length ? l2 →
268 (l1 = [] → l2 = [] → P) →
269 (∀hd1,hd2,tl1,tl2.l1 = hd1::tl1 → l2 = hd2::tl2 → P) → P.
270 #T1 #T2 #l1 #l2 #P #Hl @(list_ind2 … Hl)
271 [ #Pnil #Pcons @Pnil //
272 | #tl1 #tl2 #hd1 #hd2 #IH1 #IH2 #Hp @Hp // ]
275 (*********************** properties of append ***********************)
276 lemma append_l1_injective :
277 ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l1 = l2.
278 #a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) //
279 #tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct @eq_f /2/
282 lemma append_l2_injective :
283 ∀A.∀l1,l2,l3,l4:list A. |l1| = |l2| → l1@l3 = l2@l4 → l3 = l4.
284 #a #l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen) normalize //
285 #tl1 #tl2 #hd1 #hd2 #IH normalize #Heq destruct /2/
288 lemma append_l1_injective_r :
289 ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l1 = l2.
290 #a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq)
291 >reverse_append >reverse_append #Heq1
292 lapply (append_l2_injective … Heq1) [ // ] #Heq2
293 lapply (eq_f … (reverse ?) … Heq2) //
296 lemma append_l2_injective_r :
297 ∀A.∀l1,l2,l3,l4:list A. |l3| = |l4| → l1@l3 = l2@l4 → l3 = l4.
298 #a #l1 #l2 #l3 #l4 #Hlen #Heq lapply (eq_f … (reverse ?) … Heq)
299 >reverse_append >reverse_append #Heq1
300 lapply (append_l1_injective … Heq1) [ // ] #Heq2
301 lapply (eq_f … (reverse ?) … Heq2) //
304 lemma length_rev_append: ∀A.∀l,acc:list A.
305 |rev_append ? l acc| = |l|+|acc|.
306 #A #l elim l // #a #tl #Hind normalize
307 #acc >Hind normalize //
310 (****************************** mem ********************************)
311 let rec mem A (a:A) (l:list A) on l ≝
314 | cons hd tl ⇒ a=hd ∨ mem A a tl
317 lemma mem_append: ∀A,a,l1,l2.mem A a (l1@l2) →
318 mem ? a l1 ∨ mem ? a l2.
323 |#Hmema cases (Hind ? Hmema) -Hmema #Hmema [%1 %2 //|%2 //]
328 lemma mem_append_l1: ∀A,a,l1,l2.mem A a l1 → mem A a (l1@l2).
329 #A #a #l1 #l2 elim l1
330 [whd in ⊢ (%→?); @False_ind
331 |#b #tl #Hind * [#eqab %1 @eqab |#Hmema %2 @Hind //]
335 lemma mem_append_l2: ∀A,a,l1,l2.mem A a l2 → mem A a (l1@l2).
336 #A #a #l1 #l2 elim l1 [//|#b #tl #Hind #Hmema %2 @Hind //]
339 lemma mem_single: ∀A,a,b. mem A a [b] → a=b.
340 #A #a #b * // @False_ind
343 lemma mem_map: ∀A,B.∀f:A→B.∀l,b.
344 mem ? b (map … f l) → ∃a. mem ? a l ∧ f a = b.
346 [#b normalize @False_ind
347 |#a #tl #Hind #b normalize *
348 [#eqb @(ex_intro … a) /3/
349 |#memb cases (Hind … memb) #a * #mema #eqb
355 lemma mem_map_forward: ∀A,B.∀f:A→B.∀a,l.
356 mem A a l → mem B (f a) (map ?? f l).
357 #A #B #f #a #l elim l
358 [normalize @False_ind
360 [#eqab <eqab normalize %1 % |#memtl normalize %2 @Hind @memtl]
364 (****************************** mem filter ***************************)
365 lemma mem_filter: ∀S,f,a,l.
366 mem S a (filter S f l) → mem S a l.
367 #S #f #a #l elim l [normalize //]
368 #b #tl #Hind normalize (cases (f b)) normalize
369 [* [#eqab %1 @eqab | #H %2 @Hind @H]
373 lemma mem_filter_true: ∀S,f,a,l.
374 mem S a (filter S f l) → f a = true.
375 #S #f #a #l elim l [normalize @False_ind ]
376 #b #tl #Hind cases (true_or_false (f b)) #H
377 normalize >H normalize [2:@Hind]
381 lemma mem_filter_l: ∀S,f,x,l. (f x = true) → mem S x l →
382 mem S x (filter ? f l).
383 #S #f #x #l #fx elim l [@False_ind]
385 [#eqxb <eqxb >(filter_true ???? fx) %1 %
386 |#Htl cases (true_or_false (f b)) #fb
387 [>(filter_true ???? fb) %2 @Hind @Htl
388 |>(filter_false ???? fb) @Hind @Htl
393 lemma filter_case: ∀A,p,l,x. mem ? x l →
394 mem ? x (filter A p l) ∨ mem ? x (filter A (λx.¬ p x) l).
398 [#eqxa >eqxa cases (true_or_false (p a)) #Hcase
399 [%1 >(filter_true A tl a p Hcase) %1 %
400 |%2 >(filter_true A tl a ??) [%1 % | >Hcase %]
402 |#memx cases (Hind … memx) -memx #memx
403 [%1 cases (true_or_false (p a)) #Hpa
404 [>(filter_true A tl a p Hpa) %2 @memx
405 |>(filter_false A tl a p Hpa) @memx
407 |cases (true_or_false (p a)) #Hcase
408 [%2 >(filter_false A tl a) [@memx |>Hcase %]
409 |%2 >(filter_true A tl a) [%2 @memx|>Hcase %]
416 lemma filter_length2: ∀A,p,l. |filter A p l|+|filter A (λx.¬ p x) l| = |l|.
418 #a #tl #Hind cases (true_or_false (p a)) #Hcase
419 [>(filter_true A tl a p Hcase) >(filter_false A tl a ??)
420 [@(eq_f ?? S) @Hind | >Hcase %]
421 |>(filter_false A tl a p Hcase) >(filter_true A tl a ??)
422 [<plus_n_Sm @(eq_f ?? S) @Hind | >Hcase %]
426 (***************************** unique *******************************)
427 let rec unique A (l:list A) on l ≝
430 |cons a tl ⇒ ¬ mem A a tl ∧ unique A tl].
432 lemma unique_filter : ∀S,l,f.
433 unique S l → unique S (filter S f l).
436 #memba #uniquetl cases (true_or_false … (f a)) #Hfa
437 [>(filter_true ???? Hfa) %
438 [@(not_to_not … memba) @mem_filter |/2/ ]
443 lemma filter_eqb : ∀m,l. unique ? l →
444 (mem ? m l ∧ filter ? (eqb m) l = [m])∨(¬mem ? m l ∧ filter ? (eqb m) l = []).
446 [#_ %2 % [% @False_ind | //]
447 |#a #tl #Hind * #Hmema #Hunique
449 [* #Hmemm #Hind %1 % [%2 //]
450 >filter_false // @not_eq_to_eqb_false % #eqma @(absurd ? Hmemm) //
451 |* #Hmemm #Hind cases (decidable_eq_nat m a) #eqma
452 [%1 <eqma % [%1 //] >filter_true [2: @eq_to_eqb_true //] >Hind //
454 [@(not_to_not … Hmemm) * // #H @False_ind @(absurd … H) //
455 |>filter_false // @not_eq_to_eqb_false @eqma
462 lemma length_filter_eqb: ∀m,l. unique ? l →
463 |filter ? (eqb m) l| ≤ 1.
464 #m #l #Huni cases (filter_eqb m l Huni) * #_ #H >H //
467 (***************************** split *******************************)
468 let rec split_rev A (l:list A) acc n on n ≝
473 |cons a tl ⇒ split_rev A tl (a::acc) m
477 definition split ≝ λA,l,n.
478 let 〈l1,l2〉 ≝ split_rev A l [] n in 〈reverse ? l1,l2〉.
480 lemma split_rev_len: ∀A,n,l,acc. n ≤ |l| →
481 |\fst (split_rev A l acc n)| = n+|acc|.
482 #A #n elim n // #m #Hind *
483 [normalize #acc #Hfalse @False_ind /2/
484 |#a #tl #acc #Hlen normalize >Hind
485 [normalize // |@le_S_S_to_le //]
489 lemma split_len: ∀A,n,l. n ≤ |l| →
490 |\fst (split A l n)| = n.
491 #A #n #l #Hlen normalize >(eq_pair_fst_snd ?? (split_rev …))
492 normalize >length_reverse >(split_rev_len … [ ] Hlen) normalize //
495 lemma split_rev_eq: ∀A,n,l,acc. n ≤ |l| →
497 reverse ? (\fst (split_rev A l acc n))@(\snd (split_rev A l acc n)).
500 [#acc whd in ⊢ ((??%)→?); #False_ind /2/
501 |#a #tl #acc #Hlen >append_cons <reverse_single <reverse_append
502 @(Hind tl) @le_S_S_to_le @Hlen
506 lemma split_eq: ∀A,n,l. n ≤ |l| →
507 l = (\fst (split A l n))@(\snd (split A l n)).
508 #A #n #l #Hlen change with ((reverse ? [ ])@l) in ⊢ (??%?);
509 >(split_rev_eq … Hlen) normalize
510 >(eq_pair_fst_snd ?? (split_rev A l [] n)) %
513 lemma split_exists: ∀A,n.∀l:list A. n ≤ |l| →
514 ∃l1,l2. l = l1@l2 ∧ |l1| = n.
515 #A #n #l #Hlen @(ex_intro … (\fst (split A l n)))
516 @(ex_intro … (\snd (split A l n))) % /2/
519 (****************************** flatten ******************************)
520 definition flatten ≝ λA.foldr (list A) (list A) (append A) [].
522 lemma flatten_to_mem: ∀A,n,l,l1,l2.∀a:list A. 0 < n →
523 (∀x. mem ? x l → |x| = n) → |a| = n → flatten ? l = l1@a@l2 →
524 (∃q.|l1| = n*q) → mem ? a l.
526 [normalize #l1 #l2 #a #posn #Hlen #Ha #Hnil @False_ind
527 cut (|a|=0) [@sym_eq @le_n_O_to_eq
528 @(transitive_le ? (|nil A|)) // >Hnil >length_append >length_append //] /2/
529 |#hd #tl #Hind #l1 #l2 #a #posn #Hlen #Ha
530 whd in match (flatten ??); #Hflat * #q cases q
532 cut (a = hd) [>(lenght_to_nil… Hl1) in Hflat;
533 whd in ⊢ ((???%)→?); #Hflat @sym_eq @(append_l1_injective … Hflat)
536 |#q1 #Hl1 lapply (split_exists … n l1 ?) //
537 * #l11 * #l12 * #Heql1 #Hlenl11 %2
538 @(Hind l12 l2 … posn ? Ha)
539 [#x #memx @Hlen %2 //
540 |@(append_l2_injective ? hd l11)
542 |>Hflat >Heql1 >associative_append %
544 |@(ex_intro …q1) @(injective_plus_r n)
545 <Hlenl11 in ⊢ (??%?); <length_append <Heql1 >Hl1 //
551 (****************************** nth ********************************)
552 let rec nth n (A:Type[0]) (l:list A) (d:A) ≝
555 |S m ⇒ nth m A (tail A l) d].
557 lemma nth_nil: ∀A,a,i. nth i A ([]) a = a.
558 #A #a #i elim i normalize //
561 (****************************** nth_opt ********************************)
562 let rec nth_opt (A:Type[0]) (n:nat) (l:list A) on l : option A ≝
565 | cons h t ⇒ match n with [ O ⇒ Some ? h | S m ⇒ nth_opt A m t ]
568 (**************************** All *******************************)
570 let rec All (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝
573 | cons h t ⇒ P h ∧ All A P t
576 lemma All_mp : ∀A,P,Q. (∀a.P a → Q a) → ∀l. All A P l → All A Q l.
577 #A #P #Q #H #l elim l normalize //
581 lemma All_nth : ∀A,P,n,l.
584 nth_opt A n l = Some A a →
587 [ * [ #_ #a #E whd in E:(??%?); destruct
588 | #hd #tl * #H #_ #a #E whd in E:(??%?); destruct @H
591 [ #_ #a #E whd in E:(??%?); destruct
592 | #hd #tl * #_ whd in ⊢ (? → ∀_.??%? → ?); @IH
596 lemma All_append: ∀A,P,l1,l2. All A P l1 → All A P l2 → All A P (l1@l2).
597 #A #P #l1 elim l1 -l1 //
598 #a #l1 #IHl1 #l2 * /3 width=1/
601 lemma All_inv_append: ∀A,P,l1,l2. All A P (l1@l2) → All A P l1 ∧ All A P l2.
602 #A #P #l1 elim l1 -l1 /2 width=1/
603 #a #l1 #IHl1 #l2 * #Ha #Hl12
604 elim (IHl1 … Hl12) -IHl1 -Hl12 /3 width=1/
607 (**************************** Allr ******************************)
609 let rec Allr (A:Type[0]) (R:relation A) (l:list A) on l : Prop ≝
612 | cons a1 l ⇒ match l with [ nil ⇒ True | cons a2 _ ⇒ R a1 a2 ∧ Allr A R l ]
615 lemma Allr_fwd_append_sn: ∀A,R,l1,l2. Allr A R (l1@l2) → Allr A R l1.
616 #A #R #l1 elim l1 -l1 // #a1 * // #a2 #l1 #IHl1 #l2 * /3 width=2/
619 lemma Allr_fwd_cons: ∀A,R,a,l. Allr A R (a::l) → Allr A R l.
620 #A #R #a * // #a0 #l * //
623 lemma Allr_fwd_append_dx: ∀A,R,l1,l2. Allr A R (l1@l2) → Allr A R l2.
624 #A #R #l1 elim l1 -l1 // #a1 #l1 #IHl1 #l2 #H
625 lapply (Allr_fwd_cons … (l1@l2) H) -H /2 width=1/
628 (**************************** Exists *******************************)
630 let rec Exists (A:Type[0]) (P:A → Prop) (l:list A) on l : Prop ≝
633 | cons h t ⇒ (P h) ∨ (Exists A P t)
636 lemma Exists_append : ∀A,P,l1,l2.
637 Exists A P (l1 @ l2) → Exists A P l1 ∨ Exists A P l2.
642 | #H cases (IH l2 H) /3/
646 lemma Exists_append_l : ∀A,P,l1,l2.
647 Exists A P l1 → Exists A P (l1@l2).
648 #A #P #l1 #l2 elim l1
656 lemma Exists_append_r : ∀A,P,l1,l2.
657 Exists A P l2 → Exists A P (l1@l2).
658 #A #P #l1 #l2 elim l1
660 | #h #t #IH #H %2 @IH @H
663 lemma Exists_add : ∀A,P,l1,x,l2. Exists A P (l1@l2) → Exists A P (l1@x::l2).
664 #A #P #l1 #x #l2 elim l1
666 | #h #t #IH normalize * [ #H %1 @H | #H %2 @IH @H ]
669 lemma Exists_mid : ∀A,P,l1,x,l2. P x → Exists A P (l1@x::l2).
670 #A #P #l1 #x #l2 #H elim l1
675 lemma Exists_map : ∀A,B,P,Q,f,l.
678 Exists B Q (map A B f l).
679 #A #B #P #Q #f #l elim l //
680 #h #t #IH * [ #H #F %1 @F @H | #H #F %2 @IH [ @H | @F ] ] qed.
682 lemma Exists_All : ∀A,P,Q,l.
686 #A #P #Q #l elim l [ * | #hd #tl #IH * [ #H1 * #H2 #_ %{hd} /2/ | #H1 * #_ #H2 @IH // ]
689 (**************************** fold *******************************)
691 let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→bool) (f:A→B) (l:list A) on l :B ≝
695 if p a then op (f a) (fold A B op b p f l)
696 else fold A B op b p f l].
698 notation "\fold [ op , nil ]_{ ident i ∈ l | p} f"
700 for @{'fold $op $nil (λ${ident i}. $p) (λ${ident i}. $f) $l}.
702 notation "\fold [ op , nil ]_{ident i ∈ l } f"
704 for @{'fold $op $nil (λ${ident i}.true) (λ${ident i}. $f) $l}.
706 interpretation "\fold" 'fold op nil p f l = (fold ? ? op nil p f l).
709 ∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f:A→B. p a = true →
710 \fold[op,nil]_{i ∈ a::l| p i} (f i) =
711 op (f a) \fold[op,nil]_{i ∈ l| p i} (f i).
712 #A #B #a #l #p #op #nil #f #pa normalize >pa // qed.
715 ∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f.
716 p a = false → \fold[op,nil]_{i ∈ a::l| p i} (f i) =
717 \fold[op,nil]_{i ∈ l| p i} (f i).
718 #A #B #a #l #p #op #nil #f #pa normalize >pa // qed.
721 ∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f:A →B.
722 \fold[op,nil]_{i ∈ l| p i} (f i) =
723 \fold[op,nil]_{i ∈ (filter A p l)} (f i).
724 #A #B #a #l #p #op #nil #f elim l //
725 #a #tl #Hind cases(true_or_false (p a)) #pa
726 [ >filter_true // > fold_true // >fold_true //
727 | >filter_false // >fold_false // ]
730 record Aop (A:Type[0]) (nil:A) : Type[0] ≝
732 nill:∀a. op nil a = a;
733 nilr:∀a. op a nil = a;
734 assoc: ∀a,b,c.op a (op b c) = op (op a b) c
737 theorem fold_sum: ∀A,B. ∀I,J:list A.∀nil.∀op:Aop B nil.∀f.
738 op (\fold[op,nil]_{i∈I} (f i)) (\fold[op,nil]_{i∈J} (f i)) =
739 \fold[op,nil]_{i∈(I@J)} (f i).
740 #A #B #I #J #nil #op #f (elim I) normalize
741 [>nill //|#a #tl #Hind <assoc //]
744 (********************** lhd and ltl ******************************)
746 let rec lhd (A:Type[0]) (l:list A) n on n ≝ match n with
748 | S n ⇒ match l with [ nil ⇒ nil … | cons a l ⇒ a :: lhd A l n ]
751 let rec ltl (A:Type[0]) (l:list A) n on n ≝ match n with
753 | S n ⇒ ltl A (tail … l) n
756 lemma lhd_nil: ∀A,n. lhd A ([]) n = [].
760 lemma ltl_nil: ∀A,n. ltl A ([]) n = [].
761 #A #n elim n normalize //
764 lemma lhd_cons_ltl: ∀A,n,l. lhd A l n @ ltl A l n = l.
766 #n #IHn #l elim l normalize //
769 lemma length_ltl: ∀A,n,l. |ltl A l n| = |l| - n.
771 #n #IHn *; normalize /2/
774 (********************** find ******************************)
775 let rec find (A,B:Type[0]) (f:A → option B) (l:list A) on l : option B ≝
780 [ None ⇒ find A B f t
785 (********************** position_of ******************************)
786 let rec position_of_aux (A:Type[0]) (found: A → bool) (l:list A) (acc:nat) on l : option nat ≝
790 match found h with [true ⇒ Some … acc | false ⇒ position_of_aux … found t (S acc)]].
792 definition position_of: ∀A:Type[0]. (A → bool) → list A → option nat ≝
793 λA,found,l. position_of_aux A found l 0.
796 (********************** make_list ******************************)
797 let rec make_list (A:Type[0]) (a:A) (n:nat) on n : list A ≝
800 | S m ⇒ a::(make_list A a m)