]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/lib/basics/lists/listb.ma
finished semantics for termination of match machine
[helm.git] / matita / matita / lib / basics / lists / listb.ma
1 (*
2     ||M||  This file is part of HELM, an Hypertextual, Electronic        
3     ||A||  Library of Mathematics, developed at the Computer Science     
4     ||T||  Department of the University of Bologna, Italy.                     
5     ||I||                                                                 
6     ||T||  
7     ||A||  
8     \   /  This file is distributed under the terms of the       
9      \ /   GNU General Public License Version 2   
10       V_______________________________________________________________ *)
11
12
13 (* boolean functions over lists *)
14
15 include "basics/lists/list.ma".
16 include "basics/sets.ma".
17 include "basics/deqsets.ma".
18
19 (********* isnilb *********)
20 let rec isnilb A (l: list A) on l ≝
21 match l with
22 [ nil ⇒ true
23 | cons hd tl ⇒ false
24 ].
25
26 (********* search *********)
27
28 let rec memb (S:DeqSet) (x:S) (l: list S) on l  ≝
29   match l with
30   [ nil ⇒ false
31   | cons a tl ⇒ (x == a) ∨ memb S x tl
32   ].
33
34 interpretation "boolean membership" 'mem a l = (memb ? a l).
35
36 lemma memb_hd: ∀S,a,l. memb S a (a::l) = true.
37 #S #a #l normalize >(proj2 … (eqb_true S …) (refl S a)) //
38 qed.
39
40 lemma memb_cons: ∀S,a,b,l. 
41   memb S a l = true → memb S a (b::l) = true.
42 #S #a #b #l normalize cases (a==b) normalize // 
43 qed.
44
45 lemma memb_single: ∀S,a,x. memb S a [x] = true → a = x.
46 #S #a #x normalize cases (true_or_false … (a==x)) #H
47   [#_ >(\P H) // |>H normalize #abs @False_ind /2/]
48 qed.
49
50 lemma memb_append: ∀S,a,l1,l2. 
51 memb S a (l1@l2) = true →
52   memb S a l1= true ∨ memb S a l2 = true.
53 #S #a #l1 elim l1 normalize [#l2 #H %2 //] 
54 #b #tl #Hind #l2 cases (a==b) normalize /2/ 
55 qed. 
56
57 lemma memb_append_l1: ∀S,a,l1,l2. 
58  memb S a l1= true → memb S a (l1@l2) = true.
59 #S #a #l1 elim l1 normalize
60   [normalize #le #abs @False_ind /2/
61   |#b #tl #Hind #l2 cases (a==b) normalize /2/ 
62   ]
63 qed. 
64
65 lemma memb_append_l2: ∀S,a,l1,l2. 
66  memb S a l2= true → memb S a (l1@l2) = true.
67 #S #a #l1 elim l1 normalize //
68 #b #tl #Hind #l2 cases (a==b) normalize /2/ 
69 qed. 
70
71 lemma memb_exists: ∀S,a,l.memb S a l = true → 
72   ∃l1,l2.l=l1@(a::l2).
73 #S #a #l elim l [normalize #abs @False_ind /2/]
74 #b #tl #Hind #H cases (orb_true_l … H)
75   [#eqba @(ex_intro … (nil S)) @(ex_intro … tl) >(\P eqba) //
76   |#mem_tl cases (Hind mem_tl) #l1 * #l2 #eqtl
77    @(ex_intro … (b::l1)) @(ex_intro … l2) >eqtl //
78   ]
79 qed.
80
81 lemma not_memb_to_not_eq: ∀S,a,b,l. 
82  memb S a l = false → memb S b l = true → a==b = false.
83 #S #a #b #l cases (true_or_false (a==b)) // 
84 #eqab >(\P eqab) #H >H #abs @False_ind /2/
85 qed. 
86  
87 lemma memb_map: ∀S1,S2,f,a,l. memb S1 a l= true → 
88   memb S2 (f a) (map … f l) = true.
89 #S1 #S2 #f #a #l elim l normalize [//]
90 #x #tl #memba cases (true_or_false (a==x))
91   [#eqx >eqx >(\P eqx) >(\b (refl … (f x))) normalize //
92   |#eqx >eqx cases (f a==f x) normalize /2/
93   ]
94 qed.
95
96 lemma memb_compose: ∀S1,S2,S3,op,a1,a2,l1,l2.   
97   memb S1 a1 l1 = true → memb S2 a2 l2 = true →
98   memb S3 (op a1 a2) (compose S1 S2 S3 op l1 l2) = true.
99 #S1 #S2 #S3 #op #a1 #a2 #l1 elim l1 [normalize //]
100 #x #tl #Hind #l2 #memba1 #memba2 cases (orb_true_l … memba1)
101   [#eqa1 >(\P eqa1) @memb_append_l1 @memb_map // 
102   |#membtl @memb_append_l2 @Hind //
103   ]
104 qed.
105
106 lemma memb_reverse: ∀S:DeqSet.∀a:S.∀l.
107   memb ? a l = true → memb ? a (reverse ? l) = true.
108 #S #a #l elim l [normalize //]
109 #b #tl #Hind #memba change with ([b]@tl) in match (b::tl);
110 >reverse_append cases (orb_true_l … memba) #Hcase
111   [@memb_append_l2 >(\P Hcase) whd in match (reverse ??); @memb_hd
112   |@memb_append_l1 /2/
113   ]
114 qed.
115
116 lemma mem_to_memb: ∀S:DeqSet.∀a,l. mem S a l → memb S a l = true.
117 #S #a #l elim l normalize
118   [@False_ind
119   |#hd #tl #Hind *
120     [#eqa >(\b eqa) %
121     |#Hmem cases (a==hd) // normalize /2/
122     ]
123   ]
124 qed.
125
126 lemma memb_to_mem: ∀S:DeqSet.∀l,a. memb S a l =true → mem S a l.
127 #S #l #a elim l 
128   [normalize #H destruct
129   |#b #tl #Hind #mema cases (orb_true_l … mema) 
130     [#eqab >(\P eqab) %1 % |#memtl %2 @Hind @memtl]
131   ]
132 qed.
133
134 (**************** unicity test *****************)
135
136 let rec uniqueb (S:DeqSet) l on l : bool ≝
137   match l with 
138   [ nil ⇒ true
139   | cons a tl ⇒ notb (memb S a tl) ∧ uniqueb S tl
140   ].
141
142 (* unique_append l1 l2 add l1 in fornt of l2, but preserving unicity *)
143
144 let rec unique_append (S:DeqSet) (l1,l2: list S) on l1 ≝
145   match l1 with
146   [ nil ⇒ l2
147   | cons a tl ⇒ 
148      let r ≝ unique_append S tl l2 in
149      if memb S a r then r else a::r
150   ].
151
152 lemma memb_unique_append: ∀S,a,l1,l2. 
153 memb S a (unique_append S l1 l2) = true →
154   memb S a l1= true ∨ memb S a l2 = true.
155 #S #a #l1 elim l1 normalize [#l2 #H %2 //] 
156 #b #tl #Hind #l2 cases (true_or_false … (a==b)) #Hab >Hab normalize /2/
157 cases (memb S b (unique_append S tl l2)) normalize 
158   [@Hind | >Hab normalize @Hind]   
159 qed. 
160
161 lemma unique_append_elim: ∀S:DeqSet.∀P: S → Prop.∀l1,l2. 
162 (∀x. memb S x l1 = true → P x) → (∀x. memb S x l2 = true → P x) →
163 ∀x. memb S x (unique_append S l1 l2) = true → P x. 
164 #S #P #l1 #l2 #Hl1 #Hl2 #x #membx cases (memb_unique_append … membx)
165 /2/ 
166 qed.
167
168 lemma unique_append_unique: ∀S,l1,l2. uniqueb S l2 = true →
169   uniqueb S (unique_append S l1 l2) = true.
170 #S #l1 elim l1 normalize // #a #tl #Hind #l2 #uniquel2
171 cases (true_or_false … (memb S a (unique_append S tl l2))) 
172 #H >H normalize [@Hind //] >H normalize @Hind //
173 qed.
174
175 lemma memb_map_inj: ∀A,B:DeqSet.∀f:A→B.∀l,a. injective A B f → 
176   memb ? (f a) (map ?? f l) = true → memb ? a l = true.
177 #A #B #f #l #a #injf elim l
178   [normalize //
179   |#a1 #tl #Hind #Ha cases (orb_true_l … Ha)
180     [#eqf @orb_true_r1 @(\b ?)  >(injf … (\P eqf)) //
181     |#membtl @orb_true_r2 /2/
182     ]
183   ]
184 qed.
185
186 lemma unique_map_inj: ∀A,B:DeqSet.∀f:A→B.∀l. injective A B f → 
187   uniqueb A l = true → uniqueb B (map ?? f l) = true .
188 #A #B #f #l #injf elim l 
189   [normalize //
190   |#a #tl #Hind #Htl @true_to_andb_true
191     [@sym_eq @noteq_to_eqnot @sym_not_eq 
192      @(not_to_not ?? (memb_map_inj … injf …) )
193      <(andb_true_l ?? Htl) /2/
194     |@Hind @(andb_true_r ?? Htl)
195     ]
196   ]
197 qed.
198
199 (******************* sublist *******************)
200 definition sublist ≝ 
201   λS,l1,l2.∀a. memb S a l1 = true → memb S a l2 = true.
202
203 lemma sublist_length: ∀S,l1,l2. 
204  uniqueb S l1 = true → sublist S l1 l2 → |l1| ≤ |l2|.
205 #S #l1 elim l1 // 
206 #a #tl #Hind #l2 #unique #sub
207 cut (∃l3,l4.l2=l3@(a::l4)) [@memb_exists @sub //]
208 * #l3 * #l4 #eql2 >eql2 >length_append normalize 
209 applyS le_S_S <length_append @Hind [@(andb_true_r … unique)]
210 >eql2 in sub; #sub #x #membx 
211 cases (memb_append … (sub x (orb_true_r2 … membx)))
212   [#membxl3 @memb_append_l1 //
213   |#membxal4 cases (orb_true_l … membxal4)
214     [#eqxa @False_ind lapply (andb_true_l … unique)
215      <(\P eqxa) >membx normalize /2/ |#membxl4 @memb_append_l2 //
216     ]
217   ]
218 qed.
219
220 lemma sublist_unique_append_l1: 
221   ∀S,l1,l2. sublist S l1 (unique_append S l1 l2).
222 #S #l1 elim l1 normalize [#l2 #S #abs @False_ind /2/]
223 #x #tl #Hind #l2 #a 
224 normalize cases (true_or_false … (a==x)) #eqax >eqax 
225 [<(\P eqax) cases (true_or_false (memb S a (unique_append S tl l2)))
226   [#H >H normalize // | #H >H normalize >(\b (refl … a)) //]
227 |cases (memb S x (unique_append S tl l2)) normalize 
228   [/2/ |>eqax normalize /2/]
229 ]
230 qed.
231
232 lemma sublist_unique_append_l2: 
233   ∀S,l1,l2. sublist S l2 (unique_append S l1 l2).
234 #S #l1 elim l1 [normalize //] #x #tl #Hind normalize 
235 #l2 #a cases (memb S x (unique_append S tl l2)) normalize
236 [@Hind | cases (a==x) normalize // @Hind]
237 qed.
238
239 lemma decidable_sublist:∀S,l1,l2. 
240   (sublist S l1 l2) ∨ ¬(sublist S l1 l2).
241 #S #l1 #l2 elim l1 
242   [%1 #a normalize in ⊢ (%→?); #abs @False_ind /2/
243   |#a #tl * #subtl 
244     [cases (true_or_false (memb S a l2)) #memba
245       [%1 whd #x #membx cases (orb_true_l … membx)
246         [#eqax >(\P eqax) // |@subtl]
247       |%2 @(not_to_not … (eqnot_to_noteq … true memba)) #H1 @H1 @memb_hd
248       ]
249     |%2 @(not_to_not … subtl) #H1 #x #H2 @H1 @memb_cons //
250     ] 
251   ]
252 qed.
253
254 (********************* filtering *****************)
255
256 lemma memb_filter_memb: ∀S,f,a,l. 
257   memb S a (filter S f l) = true → memb S a l = true.
258 #S #f #a #l elim l [normalize //]
259 #b #tl #Hind normalize (cases (f b)) normalize 
260 cases (a==b) normalize // @Hind
261 qed.
262   
263 lemma uniqueb_filter : ∀S,l,f.
264  uniqueb S l = true → uniqueb S (filter S f l) = true.
265 #S #l #f elim l //
266 #a #tl #Hind #Hunique cases (andb_true … Hunique)
267 #memba #uniquetl cases (true_or_false … (f a)) #Hfa
268   [>filter_true // @true_to_andb_true
269     [@sym_eq @noteq_to_eqnot @(not_to_not … (eqnot_to_noteq … (sym_eq … memba)))
270      #H @sym_eq @(memb_filter_memb … f) <H // 
271     |/2/
272     ]
273   |>filter_false /2/
274   ]
275 qed.
276   
277 lemma filter_true: ∀S,f,a,l. 
278   memb S a (filter S f l) = true → f a = true.
279 #S #f #a #l elim l [normalize #H @False_ind /2/]
280 #b #tl #Hind cases (true_or_false (f b)) #H
281 normalize >H normalize [2:@Hind]
282 cases (true_or_false (a==b)) #eqab
283   [#_ >(\P eqab) // | >eqab normalize @Hind]
284 qed. 
285   
286 lemma memb_filter: ∀S,f,l,x. memb S x (filter ? f l) = true → 
287 memb S x l = true ∧ (f x = true).
288 /3/ qed.
289
290 lemma memb_filter_l: ∀S,f,x,l. (f x = true) → memb S x l = true →
291 memb S x (filter ? f l) = true.
292 #S #f #x #l #fx elim l normalize //
293 #b #tl #Hind cases (true_or_false (x==b)) #eqxb
294   [<(\P eqxb) >(\b (refl … x)) >fx normalize >(\b (refl … x)) normalize //
295   |>eqxb cases (f b) normalize [>eqxb normalize @Hind| @Hind]
296   ]
297 qed. 
298
299 (********************* exists *****************)
300
301 let rec exists (A:Type[0]) (p:A → bool) (l:list A) on l : bool ≝
302 match l with
303 [ nil ⇒ false
304 | cons h t ⇒ orb (p h) (exists A p t)
305 ].
306
307 lemma Exists_exists : ∀A,P,l.
308   Exists A P l →
309   ∃x. P x.
310 #A #P #l elim l [ * | #hd #tl #IH * [ #H %{hd} @H | @IH ]
311 qed.