]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/lib/basics/lists/lstar.ma
some results on co-composition ...
[helm.git] / matita / matita / lib / basics / lists / lstar.ma
1 (*
2     ||M||  This file is part of HELM, an Hypertextual, Electronic        
3     ||A||  Library of Mathematics, developed at the Computer Science     
4     ||T||  Department of the University of Bologna, Italy.                     
5     ||I||                                                                 
6     ||T||  
7     ||A||  
8     \   /  This file is distributed under the terms of the       
9      \ /   GNU General Public License Version 2   
10       V_______________________________________________________________ *)
11
12 include "basics/lists/list.ma".
13
14 (* list-labeled reflexive and transitive closure ****************************)
15
16 definition ltransitive: ∀A,B:Type[0]. predicate (list A → relation B) ≝ λA,B,R.
17                         ∀l1,b1,b. R l1 b1 b → ∀l2,b2. R l2 b b2 → R (l1@l2) b1 b2. 
18
19 definition inv_ltransitive: ∀A,B:Type[0]. predicate (list A → relation B) ≝
20                             λA,B,R. ∀l1,l2,b1,b2. R (l1@l2) b1 b2 →
21                             ∃∃b. R l1 b1 b & R l2 b b2.
22
23 inductive lstar (A:Type[0]) (B:Type[0]) (R: A→relation B): list A → relation B ≝
24 | lstar_nil : ∀b. lstar A B R ([]) b b
25 | lstar_cons: ∀a,b1,b. R a b1 b →
26               ∀l,b2. lstar A B R l b b2 → lstar A B R (a::l) b1 b2
27 .
28
29 fact lstar_ind_l_aux: ∀A,B,R,b2. ∀P:relation2 (list A) B.
30                       P ([]) b2 →
31                       (∀a,l,b1,b. R a b1 b → lstar … R l b b2 → P l b → P (a::l) b1) →
32                       ∀l,b1,b. lstar … R l b1 b → b = b2 → P l b1.
33 #A #B #R #b2 #P #H1 #H2 #l #b1 #b #H elim H -b -b1
34 [ #b #H destruct /2 width=1/
35 | #a #b #b0 #Hb0 #l #b1 #Hb01 #IH #H destruct /3 width=4/
36 ]
37 qed-.
38
39 (* imporeved version of lstar_ind with "left_parameter" *)
40 lemma lstar_ind_l: ∀A,B,R,b2. ∀P:relation2 (list A) B.
41                    P ([]) b2 →
42                    (∀a,l,b1,b. R a b1 b → lstar … R l b b2 → P l b → P (a::l) b1) →
43                    ∀l,b1. lstar … R l b1 b2 → P l b1.
44 #A #B #R #b2 #P #H1 #H2 #l #b1 #Hb12
45 @(lstar_ind_l_aux … H1 H2 … Hb12) //
46 qed-.
47
48 lemma lstar_step: ∀A,B,R,a,b1,b2. R a b1 b2 → lstar A B R ([a]) b1 b2.
49 /2 width=3/
50 qed.
51
52 lemma lstar_inv_nil: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 → [] = l → b1 = b2.
53 #A #B #R #l #b1 #b2 * -l -b1 -b2 //
54 #a #b1 #b #_ #l #b2 #_ #H destruct
55 qed-.
56
57 lemma lstar_inv_cons: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 →
58                       ∀a0,l0. a0::l0 = l →
59                       ∃∃b. R a0 b1 b & lstar A B R l0 b b2.
60 #A #B #R #l #b1 #b2 * -l -b1 -b2
61 [ #b #a0 #l0 #H destruct
62 | #a #b1 #b #Hb1 #l #b2 #Hb2 #a0 #l0 #H destruct /2 width=3/
63 ]
64 qed-.
65
66 lemma lstar_inv_step: ∀A,B,R,a,b1,b2. lstar A B R ([a]) b1 b2 → R a b1 b2.
67 #A #B #R #a #b1 #b2 #H
68 elim (lstar_inv_cons ?????? H) -H [4: // |2,3: skip ] #b #Hb1 #H (**) (* simplify line *)
69 <(lstar_inv_nil ?????? H ?) -H // (**) (* simplify line *)
70 qed-.
71
72 theorem lstar_singlevalued: ∀A,B,R. (∀a. singlevalued ?? (R a)) →
73                             ∀l. singlevalued … (lstar A B R l).
74 #A #B #R #HR #l #b #c1 #H @(lstar_ind_l … l b H) -l -b
75 [ /2 width=5 by lstar_inv_nil/
76 | #a #l #b #b1 #Hb1 #_ #IHbc1 #c2 #H
77   elim (lstar_inv_cons ?????? H) -H [4: // |2,3: skip ] #b2 #Hb2 #Hbc2 (**) (* simplify line *)
78   lapply (HR … Hb1 … Hb2) -b #H destruct /2 width=1/
79 ]
80 qed-.
81
82 theorem lstar_ltransitive: ∀A,B,R. ltransitive … (lstar A B R).
83 #A #B #R #l1 #b1 #b #H @(lstar_ind_l … l1 b1 H) -l1 -b1 normalize // /3 width=3/
84 qed-.
85
86 lemma lstar_inv_ltransitive: ∀A,B,R. inv_ltransitive … (lstar A B R).
87 #A #B #R #l1 elim l1 -l1 normalize /2 width=3/
88 #a #l1 #IHl1 #l2 #b1 #b2 #H
89 elim (lstar_inv_cons … b2 H) -H [4: // |2,3: skip ] #b #Hb1 #Hb2 (**) (* simplify line *)
90 elim (IHl1 … Hb2) -IHl1 -Hb2 /3 width=3/
91 qed-.
92
93 lemma lstar_app: ∀A,B,R,l,b1,b. lstar A B R l b1 b → ∀a,b2. R a b b2 →
94                  lstar A B R (l@[a]) b1 b2.
95 #A #B #R #l #b1 #b #H @(lstar_ind_l … l b1 H) -l -b1 /2 width=1/
96 normalize /3 width=3/
97 qed.
98
99 inductive lstar_r (A:Type[0]) (B:Type[0]) (R: A→relation B): list A → relation B ≝
100 | lstar_r_nil: ∀b. lstar_r A B R ([]) b b
101 | lstar_r_app: ∀l,b1,b. lstar_r A B R l b1 b → ∀a,b2. R a b b2 →
102                lstar_r A B R (l@[a]) b1 b2
103 .
104
105 lemma lstar_r_cons: ∀A,B,R,l,b,b2. lstar_r A B R l b b2 → ∀a,b1. R a b1 b →
106                     lstar_r A B R (a::l) b1 b2.
107 #A #B #R #l #b #b2 #H elim H -l -b2 /2 width=3/
108 #l #b1 #b #_ #a #b2 #Hb2 #IHb1 #a0 #b0 #Hb01
109 @(lstar_r_app … (a0::l) … Hb2) -b2 /2 width=1/
110 qed.
111
112 lemma lstar_lstar_r: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 → lstar_r A B R l b1 b2.
113 #A #B #R #l #b1 #b2 #H @(lstar_ind_l … l b1 H) -l -b1 // /2 width=3/
114 qed.
115
116 lemma lstar_r_inv_lstar: ∀A,B,R,l,b1,b2. lstar_r A B R l b1 b2 → lstar A B R l b1 b2.
117 #A #B #R #l #b1 #b2 #H elim H -l -b1 -b2 // /2 width=3/
118 qed-.
119
120 fact lstar_ind_r_aux: ∀A,B,R,b1. ∀P:relation2 (list A) B.
121                       P ([]) b1 →
122                       (∀a,l,b,b2. lstar … R l b1 b → R a b b2 → P l b → P (l@[a]) b2) →
123                       ∀l,b,b2. lstar … R l b b2 → b = b1 → P l b2.
124 #A #B #R #b1 #P #H1 #H2 #l #b #b2 #H elim (lstar_lstar_r … l b b2 H) -l -b -b2
125 [ #b #H destruct //
126 | #l #b #b0 #Hb0 #a #b2 #Hb02 #IH #H destruct /3 width=4 by lstar_r_inv_lstar/
127 ]
128 qed-.
129
130 lemma lstar_ind_r: ∀A,B,R,b1. ∀P:relation2 (list A) B.
131                    P ([]) b1 →
132                    (∀a,l,b,b2. lstar … R l b1 b → R a b b2 → P l b → P (l@[a]) b2) →
133                    ∀l,b2. lstar … R l b1 b2 → P l b2.
134 #A #B #R #b1 #P #H1 #H2 #l #b2 #Hb12
135 @(lstar_ind_r_aux … H1 H2 … Hb12) //
136 qed-.