1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "formal_topology/relations.ma".
16 include "formal_topology/saturations.ma".
18 record basic_topology: Type[1] ≝
20 A: Ω^carrbt ⇒_1 Ω^carrbt;
21 J: Ω^carrbt ⇒_1 Ω^carrbt;
22 A_is_saturation: is_saturation ? A;
23 J_is_reduction: is_reduction ? J;
24 compatibility: ∀U,V. (A U ≬ J V) =_1 (U ≬ J V)
27 record continuous_relation (S,T: basic_topology) : Type[1] ≝
28 { cont_rel:> S ⇒_\r1 T;
29 reduced: ∀U. U =_1 J ? U → image_coercion ?? cont_rel U =_1 J ? (image_coercion ?? cont_rel U);
30 saturated: ∀U. U =_1 A ? U → (cont_rel)⎻* U = _1A ? ((cont_rel)⎻* U)
33 definition continuous_relation_setoid: basic_topology → basic_topology → setoid1.
34 intros (S T); constructor 1;
35 [ apply (continuous_relation S T)
37 [ apply (λr,s:continuous_relation S T.∀b. A ? (ext ?? r b) = A ? (ext ?? s b));
38 | simplify; intros; apply refl1;
39 | simplify; intros (x y H); apply sym1; apply H
40 | simplify; intros; apply trans1; [2: apply f |3: apply f1; |1: skip]]]
43 definition continuos_relation_of_continuous_relation_setoid :
44 ∀P,Q. continuous_relation_setoid P Q → continuous_relation P Q ≝ λP,Q,x.x.
45 coercion continuos_relation_of_continuous_relation_setoid.
47 axiom continuous_relation_eq':
48 ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
49 a = a' → ∀X.a⎻* (A o1 X) = a'⎻* (A o1 X).
51 intros; split; intro; unfold minus_star_image; simplify; intros;
52 [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;]
53 lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut;
54 cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption]
55 lapply (fi ?? (A_is_saturation ???) Hcut);
56 apply (Hletin1 x); change with (x ∈ ext ?? a' a1); split; simplify;
57 [ apply I | assumption ]
58 | cut (ext ?? a' a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;]
59 lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut;
60 cut (A ? (ext ?? a a1) ⊆ A ? X); [2: apply (. (H ?)\sup -1‡#); assumption]
61 lapply (fi ?? (A_is_saturation ???) Hcut);
62 apply (Hletin1 x); change with (x ∈ ext ?? a a1); split; simplify;
63 [ apply I | assumption ]]
66 lemma continuous_relation_eq_inv':
67 ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
68 (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → a=a'.
70 cut (∀a,a': continuous_relation_setoid o1 o2.
71 (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) →
72 ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V));
73 [2: clear b f a' a; intros;
74 lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip]
75 (* fundamental adjunction here! to be taken out *)
76 cut (∀V:Ω^o2.V ⊆ a⎻* (A ? (extS ?? a V)));
77 [2: intro; intros 2; unfold minus_star_image; simplify; intros;
78 apply (Hletin V1 x); whd; split; [ exact I | exists; [apply a1] split; assumption]]
80 cut (∀V:Ω^o2.V ⊆ a'⎻* (A ? (extS ?? a V)));
81 [2: intro; apply (. #‡(f ?)^-1); apply Hcut] clear f Hcut;
82 (* second half of the fundamental adjunction here! to be taken out too *)
83 intro; lapply (Hcut1 {(V)}); clear Hcut1;
84 unfold minus_star_image in Hletin; unfold singleton in Hletin; simplify in Hletin;
85 whd in Hletin; whd in Hletin:(?→?→%); simplify in Hletin;
86 apply (if ?? (A_is_saturation ???));
87 intros 2 (x H); lapply (Hletin V ? x ?);
88 [ apply refl | unfold foo; apply H; ]
89 change with (x ∈ A ? (ext ?? a V));
90 apply (. #‡(†(extS_singleton ????)^-1));
92 split; apply Hcut; [2: assumption | intro; apply sym1; apply f]
95 definition continuous_relation_comp:
97 continuous_relation_setoid o1 o2 →
98 continuous_relation_setoid o2 o3 →
99 continuous_relation_setoid o1 o3.
100 intros (o1 o2 o3 r s); constructor 1;
101 [ alias symbol "compose" (instance 1) = "category1 composition".
105 (*change in ⊢ (? ? ? (? ? ? ? %) ?) with (image_coercion ?? (s ∘ r) U);*)
106 apply (.= †(image_comp ??????));
107 apply (.= (reduced ?? s (image_coercion ?? r U) ?)^-1);
108 [ apply (.= (reduced ?????)); [ assumption | apply refl1 ]
109 | change in ⊢ (? ? ? % ?) with ((image_coercion ?? s ∘ image_coercion ?? r) U);
110 apply (.= (image_comp ??????)^-1);
114 apply (.= †(minus_star_image_comp ??? s r ?));
115 apply (.= (saturated ?? s ((r)⎻* U) ?)^-1);
116 [ apply (.= (saturated ?????)); [ assumption | apply refl1 ]
117 | change in ⊢ (? ? ? % ?) with ((s⎻* ∘ r⎻* ) U);
118 apply (.= (minus_star_image_comp ??????)^-1);
122 definition BTop: category1.
124 [ apply basic_topology
125 | apply continuous_relation_setoid
126 | intro; constructor 1;
129 apply (.= (image_id ??));
131 apply (.= †(image_id ??));
135 apply (.= (minus_star_image_id ??));
137 apply (.= †(minus_star_image_id ??));
140 | intros; constructor 1;
141 [ apply continuous_relation_comp;
142 | intros; simplify; intro x; simplify;
143 lapply depth=0 (continuous_relation_eq' ???? e) as H';
144 lapply depth=0 (continuous_relation_eq' ???? e1) as H1';
145 letin K ≝ (λX.H1' ((a)⎻* (A ? X))); clearbody K;
147 (b)⎻* (A o2 ((a)⎻* (A o1 X)))
148 =_1 (b')⎻* (A o2 ((a')⎻* (A o1 X))));
149 [2: intro; apply sym1;
150 apply (.= (†(†((H' X)^-1)))); apply sym1; apply (K X);]
152 alias symbol "powerset" (instance 5) = "powerset low".
153 alias symbol "compose" (instance 2) = "category1 composition".
155 ((b ∘ a))⎻* (A o1 X) =_1 ((b'∘a'))⎻* (A o1 X));
156 [2: intro; unfold foo;
157 apply (.= (minus_star_image_comp ??????));
158 change in ⊢ (? ? ? % ?) with ((b)⎻* ((a)⎻* (A o1 X)));
159 apply (.= †(saturated ?????));
160 [ apply ((saturation_idempotent ????)^-1); apply A_is_saturation ]
162 apply (.= (minus_star_image_comp ??????));
163 change in ⊢ (? ? ? % ?) with ((b')⎻* ((a')⎻* (A o1 X)));
164 apply (.= †(saturated ?????));
165 [ apply ((saturation_idempotent ????)^-1); apply A_is_saturation ]
167 clear Hcut; generalize in match x; clear x;
168 apply (continuous_relation_eq_inv');
170 | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify;
171 alias symbol "trans" (instance 1) = "trans1".
172 alias symbol "refl" (instance 5) = "refl1".
173 alias symbol "prop2" (instance 3) = "prop21".
174 alias symbol "prop1" (instance 2) = "prop11".
175 alias symbol "assoc" (instance 4) = "category1 assoc".
176 apply (.= †(ASSOC‡#));
178 | intros; simplify; intro; unfold continuous_relation_comp; simplify;
179 apply (.= †((id_neutral_right1 ????)‡#));
181 | intros; simplify; intro; simplify;
182 apply (.= †((id_neutral_left1 ????)‡#));
188 (* this proof is more logic-oriented than set/lattice oriented *)
189 theorem continuous_relation_eqS:
190 ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2.
191 a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X).
193 cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y);
194 [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split;
195 try assumption; split; assumption]
196 cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y));
197 [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption;
199 apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x);
200 assumption;] clear Hcut;
201 split; apply (if ?? (A_is_saturation ???)); intros 2;
202 [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)]
203 cases Hletin; clear Hletin; cases x; clear x;
204 cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X);
205 [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption;
206 exists [1,3: apply w] split; assumption;]
207 cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X));
208 [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;]
209 apply Hcut2; assumption.