1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "formal_topology/basic_pairs.ma".
17 (* carr1 e' necessario perche' ci sega via la coercion per gli oggetti di REL!
18 (confondendola con la coercion per gli oggetti di SET
19 record concrete_space : Type[1] ≝
21 converges: ∀a: carr1 (concr bp).∀U,V: carr1 (form bp). a ⊩ U → a ⊩ V → a ⊩ (U ↓ V);
22 all_covered: ∀x: carr1 (concr bp). x ⊩ form bp
25 record convergent_relation_pair (CS1,CS2: concrete_space) : Type[1] ≝
26 { rp:> arrows1 ? CS1 CS2;
29 minus_image ?? rp \sub\c (BPextS CS2 (b ↓ c)) =
30 BPextS CS1 ((minus_image ?? rp \sub\f b) ↓ (minus_image ?? rp \sub\f c));
32 minus_image ?? rp\sub\c (BPextS CS2 (full_subset (form CS2))) = BPextS CS1 (full_subset (form CS1))
35 definition convergent_relation_space_setoid: concrete_space → concrete_space → setoid1.
38 [ apply (convergent_relation_pair c c1)
41 apply (relation_pair_equality c c1 c2 c3);
42 | intros 1; apply refl1;
43 | intros 2; apply sym1;
44 | intros 3; apply trans1]]
47 definition convergent_relation_space_composition:
48 ∀o1,o2,o3: concrete_space.
50 (convergent_relation_space_setoid o1 o2)
51 (convergent_relation_space_setoid o2 o3)
52 (convergent_relation_space_setoid o1 o3).
53 intros; constructor 1;
54 [ intros; whd in c c1 ⊢ %;
56 [ apply (fun1 ??? (comp1 BP ???)); [apply (bp o2) |*: apply rp; assumption]
58 change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c);
59 change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? (? ? ? (? ? ? %) ?) ?)))
60 with (c1 \sub \f ∘ c \sub \f);
61 change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? ? (? ? ? (? ? ? %) ?))))
62 with (c1 \sub \f ∘ c \sub \f);
63 apply (.= (extS_com ??????));
64 apply (.= (†(respects_converges ?????)));
65 apply (.= (respects_converges ?????));
66 apply (.= (†(((extS_com ??????) \sup -1)‡(extS_com ??????)\sup -1)));
68 | change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c);
69 apply (.= (extS_com ??????));
70 apply (.= (†(respects_all_covered ???)));
71 apply (.= respects_all_covered ???);
74 change with (b ∘ a = b' ∘ a');
75 change in H with (rp'' ?? a = rp'' ?? a');
76 change in H1 with (rp'' ?? b = rp ?? b');
81 definition CSPA: category1.
83 [ apply concrete_space
84 | apply convergent_relation_space_setoid
85 | intro; constructor 1;
89 apply (.= (equalset_extS_id_X_X ??));
90 apply (.= (†((equalset_extS_id_X_X ??)\sup -1‡
91 (equalset_extS_id_X_X ??)\sup -1)));
93 | apply (.= (equalset_extS_id_X_X ??));
95 | apply convergent_relation_space_composition
97 change with (a34 ∘ (a23 ∘ a12) = (a34 ∘ a23) ∘ a12);
101 change with (a ∘ id1 ? o1 = a);
102 apply (.= id_neutral_right1 ????);
105 change with (id1 ? o2 ∘ a = a);
106 apply (.= id_neutral_left1 ????);