]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/lib/lambda-delta/reduction/lpr.ma
- cpr is now defined and the cpr_flat propery is proved! (it did not
[helm.git] / matita / matita / lib / lambda-delta / reduction / lpr.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "lambda-delta/reduction/tpr.ma".
16
17 (* CONTEXT-FREE PARALLEL REDUCTION ON LOCAL ENVIRONMENTS ********************)
18
19 inductive lpr: lenv → lenv → Prop ≝
20 | lpr_sort: lpr (⋆) (⋆)
21 | lpr_item: ∀K1,K2,I,V1,V2.
22             lpr K1 K2 → V1 ⇒ V2 → lpr (K1. 𝕓{I} V1) (K2. 𝕓{I} V2) (*𝕓*)
23 .
24
25 interpretation
26   "context-free parallel reduction (environment)"
27   'PRed L1 L2 = (lpr L1 L2).
28
29 (* Basic inversion lemmas ***************************************************)
30
31 lemma lpr_inv_item1_aux: ∀L1,L2. L1 ⇒ L2 → ∀K1,I,V1. L1 = K1. 𝕓{I} V1 →
32                          ∃∃K2,V2. K1 ⇒ K2 & V1 ⇒ V2 & L2 = K2. 𝕓{I} V2.
33 #L1 #L2 * -L1 L2
34 [ #K1 #I #V1 #H destruct
35 | #K1 #K2 #I #V1 #V2 #HK12 #HV12 #L #J #W #H destruct - K1 I V1 /2 width=5/
36 ]
37 qed.
38
39 lemma lpr_inv_item1: ∀K1,I,V1,L2. K1. 𝕓{I} V1 ⇒ L2 →
40                      ∃∃K2,V2. K1 ⇒ K2 & V1 ⇒ V2 & L2 = K2. 𝕓{I} V2.
41 /2/ qed.