]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/lib/lambda-delta/substitution/lift.ma
6b97f502cea4b1653286f82812009699ad2ffc64
[helm.git] / matita / matita / lib / lambda-delta / substitution / lift.ma
1 (*
2     ||M||  This file is part of HELM, an Hypertextual, Electronic
3     ||A||  Library of Mathematics, developed at the Computer Science
4     ||T||  Department of the University of Bologna, Italy.
5     ||I||
6     ||T||
7     ||A||  This file is distributed under the terms of the
8     \   /  GNU General Public License Version 2
9      \ /
10       V_______________________________________________________________ *)
11
12 include "lambda-delta/syntax/term.ma".
13
14 (* RELOCATION ***************************************************************)
15
16 inductive lift: term → nat → nat → term → Prop ≝
17 | lift_sort   : ∀k,d,e. lift (⋆k) d e (⋆k)
18 | lift_lref_lt: ∀i,d,e. i < d → lift (#i) d e (#i)
19 | lift_lref_ge: ∀i,d,e. d ≤ i → lift (#i) d e (#(i + e))
20 | lift_bind   : ∀I,V1,V2,T1,T2,d,e.
21                 lift V1 d e V2 → lift T1 (d + 1) e T2 →
22                 lift (𝕓{I} V1. T1) d e (𝕓{I} V2. T2)
23 | lift_flat   : ∀I,V1,V2,T1,T2,d,e.
24                 lift V1 d e V2 → lift T1 d e T2 →
25                 lift (𝕗{I} V1. T1) d e (𝕗{I} V2. T2)
26 .
27
28 interpretation "relocation" 'RLift T1 d e T2 = (lift T1 d e T2).
29
30 (* The basic properties *****************************************************)
31
32 lemma lift_lref_ge_minus: ∀d,e,i. d + e ≤ i → ↑[d,e] #(i - e) ≡ #i.
33 #d #e #i #H >(plus_minus_m_m i e) in ⊢ (? ? ? ? %) /3/
34 qed.
35
36 (* The basic inversion lemmas ***********************************************)
37
38 lemma lift_inv_sort2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀k. T2 = ⋆k → T1 = ⋆k.
39 #d #e #T1 #T2 #H elim H -H d e T1 T2 //
40 [ #i #d #e #_ #k #H destruct
41 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #k #H destruct
42 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #k #H destruct
43 ]
44 qed.
45
46 lemma lift_inv_sort2: ∀d,e,T1,k. ↑[d,e] T1 ≡ ⋆k → T1 = ⋆k.
47 #d #e #T1 #k #H lapply (lift_inv_sort2_aux … H) /2/
48 qed.
49
50 lemma lift_inv_lref2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀i. T2 = #i →
51                           (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)).
52 #d #e #T1 #T2 #H elim H -H d e T1 T2
53 [ #k #d #e #i #H destruct
54 | #j #d #e #Hj #i #Hi destruct /3/
55 | #j #d #e #Hj #i #Hi destruct <minus_plus_m_m /4/
56 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #i #H destruct
57 | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #i #H destruct
58 ]
59 qed.
60
61 lemma lift_inv_lref2: ∀d,e,T1,i. ↑[d,e] T1 ≡ #i →
62                       (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)).
63 #d #e #T1 #i #H lapply (lift_inv_lref2_aux … H) /2/
64 qed.
65
66 lemma lift_inv_bind2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
67                           ∀I,V2,U2. T2 = 𝕓{I} V2.U2 →
68                           ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
69                                    T1 = 𝕓{I} V1.U1.
70 #d #e #T1 #T2 #H elim H -H d e T1 T2
71 [ #k #d #e #I #V2 #U2 #H destruct
72 | #i #d #e #_ #I #V2 #U2 #H destruct
73 | #i #d #e #_ #I #V2 #U2 #H destruct
74 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V2 #U2 #H destruct /2 width = 5/
75 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V2 #U2 #H destruct
76 ]
77 qed.
78
79 lemma lift_inv_bind2: ∀d,e,T1,I,V2,U2. ↑[d,e] T1 ≡  𝕓{I} V2. U2 →
80                       ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
81                                T1 = 𝕓{I} V1. U1.
82 #d #e #T1 #I #V2 #U2 #H lapply (lift_inv_bind2_aux … H) /2/
83 qed.
84
85 lemma lift_inv_flat2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
86                           ∀I,V2,U2. T2 = 𝕗{I} V2.U2 →
87                           ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
88                                    T1 = 𝕗{I} V1.U1.
89 #d #e #T1 #T2 #H elim H -H d e T1 T2
90 [ #k #d #e #I #V2 #U2 #H destruct
91 | #i #d #e #_ #I #V2 #U2 #H destruct
92 | #i #d #e #_ #I #V2 #U2 #H destruct
93 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V2 #U2 #H destruct
94 | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V2 #U2 #H destruct /2 width = 5/
95 ]
96 qed.
97
98 lemma lift_inv_flat2: ∀d,e,T1,I,V2,U2. ↑[d,e] T1 ≡  𝕗{I} V2. U2 →
99                       ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 &
100                                T1 = 𝕗{I} V1. U1.
101 #d #e #T1 #I #V2 #U2 #H lapply (lift_inv_flat2_aux … H) /2/
102 qed.
103
104 (* the main properies *******************************************************)
105
106 theorem lift_trans_rev: ∀d1,e1,T1,T. ↑[d1,e1] T1 ≡ T →
107                         ∀d2,e2,T2. ↑[d2 + e1, e2] T2 ≡ T →
108                         d1 ≤ d2 →
109                         ∃∃T0. ↑[d1, e1] T0 ≡ T2 & ↑[d2, e2] T0 ≡ T1.
110 #d1 #e1 #T1 #T #H elim H -H d1 e1 T1 T
111 [ #k #d1 #e1 #d2 #e2 #T2 #Hk #Hd12
112   lapply (lift_inv_sort2 … Hk) -Hk #Hk destruct -T2 /3/
113 | #i #d1 #e1 #Hid1 #d2 #e2 #T2 #Hi #Hd12
114   lapply (lift_inv_lref2 … Hi) -Hi * * #Hid2 #H destruct -T2
115   [ -Hid2 /4/
116   | elim (lt_false d1 ?)
117     @(le_to_lt_to_lt … Hd12) -Hd12 @(le_to_lt_to_lt … Hid1) -Hid1 /2/
118   ]
119 | #i #d1 #e1 #Hid1 #d2 #e2 #T2 #Hi #Hd12
120   lapply (lift_inv_lref2 … Hi) -Hi * * #Hid2 #H destruct -T2
121   [ -Hd12; lapply (lt_plus_to_lt_l … Hid2) -Hid2 #Hid2 /3/
122   | -Hid1; lapply (arith1 … Hid2) -Hid2 #Hid2
123     @(ex2_1_intro … #(i - e2))
124     [ >le_plus_minus_comm [ @lift_lref_ge @(transitive_le … Hd12) -Hd12 /2/ | -Hd12 /2/ ]
125     | -Hd12 >(plus_minus_m_m i e2) in ⊢ (? ? ? ? %) /3/
126     ]
127   ]
128 | #I #W1 #W #U1 #U #d1 #e1 #_ #_ #IHW #IHU #d2 #e2 #T2 #H #Hd12
129   lapply (lift_inv_bind2 … H) -H * #W2 #U2 #HW2 #HU2 #H destruct -T2;
130   elim (IHW … HW2 ?) // -IHW HW2 #W0 #HW2 #HW1
131   >plus_plus_comm_23 in HU2 #HU2 elim (IHU … HU2 ?) /3 width = 5/
132 | #I #W1 #W #U1 #U #d1 #e1 #_ #_ #IHW #IHU #d2 #e2 #T2 #H #Hd12
133   lapply (lift_inv_flat2 … H) -H * #W2 #U2 #HW2 #HU2 #H destruct -T2;
134   elim (IHW … HW2 ?) // -IHW HW2 #W0 #HW2 #HW1
135   elim (IHU … HU2 ?) /3 width = 5/
136 ]
137 qed.
138
139 theorem lift_free: ∀d1,e2,T1,T2. ↑[d1, e2] T1 ≡ T2 → ∀d2,e1.
140                                  d1 ≤ d2 → d2 ≤ d1 + e1 → e1 ≤ e2 →
141                                  ∃∃T. ↑[d1, e1] T1 ≡ T & ↑[d2, e2 - e1] T ≡ T2.
142 #d1 #e2 #T1 #T2 #H elim H -H d1 e2 T1 T2
143 [ /3/
144 | #i #d1 #e2 #Hid1 #d2 #e1 #Hd12 #_ #_
145   lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 #Hid2 /4/
146 | #i #d1 #e2 #Hid1 #d2 #e1 #_ #Hd21 #He12
147   lapply (transitive_le …(i+e1) Hd21 ?) /2/ -Hd21 #Hd21
148   <(plus_plus_minus_m_m e1 e2 i) /3/
149 | #I #V1 #V2 #T1 #T2 #d1 #e2 #_ #_ #IHV #IHT #d2 #e1 #Hd12 #Hd21 #He12
150   elim (IHV … Hd12 Hd21 He12) -IHV #V0 #HV0a #HV0b
151   elim (IHT (d2+1) … ? ? He12) /3 width = 5/
152 | #I #V1 #V2 #T1 #T2 #d1 #e2 #_ #_ #IHV #IHT #d2 #e1 #Hd12 #Hd21 #He12
153   elim (IHV … Hd12 Hd21 He12) -IHV #V0 #HV0a #HV0b
154   elim (IHT d2 … ? ? He12) /3 width = 5/
155 ]
156 qed.