]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/lib/lambda-delta/substitution/lift.ma
- we introduce extended existentials (generated)
[helm.git] / matita / matita / lib / lambda-delta / substitution / lift.ma
1 (*
2     ||M||  This file is part of HELM, an Hypertextual, Electronic
3     ||A||  Library of Mathematics, developed at the Computer Science
4     ||T||  Department of the University of Bologna, Italy.
5     ||I||
6     ||T||
7     ||A||  This file is distributed under the terms of the
8     \   /  GNU General Public License Version 2
9      \ /
10       V_______________________________________________________________ *)
11
12 include "lambda-delta/language/term.ma".
13
14 (* RELOCATION ***************************************************************)
15
16 inductive lift: term → nat → nat → term → Prop ≝
17    | lift_sort   : ∀k,d,e. lift (⋆k) d e (⋆k)
18    | lift_lref_lt: ∀i,d,e. i < d → lift (#i) d e (#i)
19    | lift_lref_ge: ∀i,d,e. d ≤ i → lift (#i) d e (#(i + e))
20    | lift_con2   : ∀I,V1,V2,T1,T2,d,e.
21                    lift V1 d e V2 → lift T1 (d + 1) e T2 →
22                    lift (♭I V1. T1) d e (♭I V2. T2)
23 .
24
25 interpretation "relocation" 'RLift T1 d e T2 = (lift T1 d e T2).
26
27 (* The basic properties *****************************************************)
28
29 lemma lift_lref_ge_minus: ∀d,e,i. d + e ≤ i → ↑[d,e] #(i - e) ≡ #i.
30 #d #e #i #H >(plus_minus_m_m i e) in ⊢ (? ? ? ? %) /3/
31 qed.
32
33 (* The basic inversion lemmas ***********************************************)
34
35 lemma lift_inv_sort2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀k. T2 = ⋆k → T1 = ⋆k.
36 #d #e #T1 #T2 #H elim H -H d e T1 T2 //
37    [ #i #d #e #_ #k #H destruct
38    | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #k #H destruct
39    ]
40 qed.
41
42 lemma lift_inv_sort2: ∀d,e,T1,k. ↑[d,e] T1 ≡ ⋆k → T1 = ⋆k.
43 #d #e #T1 #k #H lapply (lift_inv_sort2_aux … H) /2/
44 qed.
45
46 lemma lift_inv_lref2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀i. T2 = #i →
47                           (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)).
48 #d #e #T1 #T2 #H elim H -H d e T1 T2
49    [ #k #d #e #i #H destruct
50    | #j #d #e #Hj #i #Hi destruct /3/
51    | #j #d #e #Hj #i #Hi destruct <minus_plus_m_m /4/
52    | #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #i #H destruct
53    ]
54 qed.
55
56 lemma lift_inv_lref2: ∀d,e,T1,i. ↑[d,e] T1 ≡ #i →
57                       (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)).
58 #d #e #T1 #i #H lapply (lift_inv_lref2_aux … H) /2/
59 qed.
60
61 lemma lift_inv_con22_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 →
62                           ∀I,V2,U2. T2 = ♭I V2.U2 →
63                           ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
64                                    T1 = ♭I V1.U1.
65 #d #e #T1 #T2 #H elim H -H d e T1 T2
66    [ #k #d #e #I #V2 #U2 #H destruct
67    | #i #d #e #_ #I #V2 #U2 #H destruct
68    | #i #d #e #_ #I #V2 #U2 #H destruct
69    | #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V2 #U2 #H destruct
70      /2 width = 5/
71    ]
72 qed.
73
74 lemma lift_inv_con22: ∀d,e,T1,I,V2,U2. ↑[d,e] T1 ≡  ♭I V2. U2 →
75                       ∃∃V1,U1. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 &
76                                T1 = ♭I V1. U1.
77 #d #e #T1 #I #V2 #U2 #H lapply (lift_inv_con22_aux … H) /2/
78 qed.
79
80 (* the main properies *******************************************************)
81
82 theorem lift_trans_rev: ∀d1,e1,T1,T. ↑[d1,e1] T1 ≡ T →
83                         ∀d2,e2,T2. ↑[d2 + e1, e2] T2 ≡ T →
84                         d1 ≤ d2 →
85                         ∃∃T0. ↑[d1, e1] T0 ≡ T2 & ↑[d2, e2] T0 ≡ T1.
86 #d1 #e1 #T1 #T #H elim H -H d1 e1 T1 T
87    [ #k #d1 #e1 #d2 #e2 #T2 #Hk #Hd12
88      lapply (lift_inv_sort2 … Hk) -Hk #Hk destruct -T2 /3/
89    | #i #d1 #e1 #Hid1 #d2 #e2 #T2 #Hi #Hd12
90      lapply (lift_inv_lref2 … Hi) -Hi * * #Hid2 #H destruct -T2
91      [ -Hid2 /4/
92      | elim (lt_false d1 ?)
93        @(le_to_lt_to_lt … Hd12) -Hd12 @(le_to_lt_to_lt … Hid1) -Hid1 /2/
94      ]
95    | #i #d1 #e1 #Hid1 #d2 #e2 #T2 #Hi #Hd12
96      lapply (lift_inv_lref2 … Hi) -Hi * * #Hid2 #H destruct -T2
97      [ -Hd12; lapply (lt_plus_to_lt_l … Hid2) -Hid2 #Hid2 /3/
98      | -Hid1; lapply (arith1 … Hid2) -Hid2 #Hid2
99        @(ex2_1_intro … #(i - e2))
100        [ >le_plus_minus_comm [ @lift_lref_ge @(transitive_le … Hd12) -Hd12 /2/ | -Hd12 /2/ ]
101        | -Hd12 >(plus_minus_m_m i e2) in ⊢ (? ? ? ? %) /3/
102        ]
103      ]
104    | #I #W1 #W #U1 #U #d1 #e1 #_ #_ #IHW #IHU #d2 #e2 #T2 #H #Hd12
105      lapply (lift_inv_con22 … H) -H * #W2 #U2 #HW2 #HU2 #H destruct -T2;
106      elim (IHW … HW2 ?) // -IHW HW2 #W0 #HW2 #HW1
107      >plus_plus_comm_23 in HU2 #HU2 elim (IHU … HU2 ?) /3 width = 5/
108    ]
109 qed.
110
111 theorem lift_free: ∀d1,e2,T1,T2. ↑[d1, e2] T1 ≡ T2 → ∀d2,e1.
112                                  d1 ≤ d2 → d2 ≤ d1 + e1 → e1 ≤ e2 →
113                                  ∃∃T. ↑[d1, e1] T1 ≡ T & ↑[d2, e2 - e1] T ≡ T2.
114 #d1 #e2 #T1 #T2 #H elim H -H d1 e2 T1 T2
115    [ /3/
116    | #i #d1 #e2 #Hid1 #d2 #e1 #Hd12 #_ #_
117      lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 #Hid2 /4/
118    | #i #d1 #e2 #Hid1 #d2 #e1 #_ #Hd21 #He12
119      lapply (transitive_le …(i+e1) Hd21 ?) /2/ -Hd21 #Hd21
120      <(plus_plus_minus_m_m e1 e2 i) /3/
121    | #I #V1 #V2 #T1 #T2 #d1 #e2 #_ #_ #IHV #IHT #d2 #e1 #Hd12 #Hd21 #He12
122      elim (IHV … Hd12 Hd21 He12) -IHV #V0 #HV0a #HV0b 
123      elim (IHT (d2+1) … ? ? He12) /3 width = 5/
124    ]
125 qed.