2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department of the University of Bologna, Italy.
7 ||A|| This file is distributed under the terms of the
8 \ / GNU General Public License Version 2
10 V_______________________________________________________________ *)
12 include "pts_dummy/types.ma".
15 inductive TJ (p: pts): list T → T → T → Prop ≝
16 | ax : ∀i,j. Ax p i j → TJ p (nil T) (Sort i) (Sort j)
17 | start: ∀G.∀A.∀i.TJ p G A (Sort i) →
18 TJ p (A::G) (Rel 0) (lift A 0 1)
20 TJ p G A B → TJ p G C (Sort i) →
21 TJ p (C::G) (lift A 0 1) (lift B 0 1)
22 | prod: ∀G.∀A,B.∀i,j,k. Re p i j k →
23 TJ p G A (Sort i) → TJ p (A::G) B (Sort j) →
24 TJ p G (Prod A B) (Sort k)
26 TJ p G F (Prod A B) → TJ p G a A →
27 TJ p G (App F a) (subst B 0 a)
29 TJ p (A::G) b B → TJ p G (Prod A B) (Sort i) →
30 TJ p G (Lambda A b) (Prod A B)
31 | conv: ∀G.∀A,B,C.∀i. Co p B C →
32 TJ p G A B → TJ p G C (Sort i) → TJ p G A C
34 TJ p G A B → TJ p G B (Sort i) → TJ p G (D A) B.
37 axiom lambda_lift : ∀A,B,C. lift A 0 1 = Lambda B C →
38 ∃P,Q. A = Lambda P Q ∧ lift P 0 1 = B ∧ lift Q 1 1 = C.
40 axiom prod_lift : ∀A,B,C. lift A 0 1 = Prod B C →
41 ∃P,Q. A = Prod P Q ∧ lift P 0 1 = B ∧ lift Q 1 1 = C.
43 axiom conv_lift: ∀P,M,N. Co P M N → Co P (lift M 0 1) (lift N 0 1).
45 axiom weak_in: ∀P,G,A,B,M,N, i.
46 A::G ⊢_{P} M : N → G ⊢_{P} B : Sort i →
47 (lift A 0 1)::B::G ⊢_{P} lift M 1 1 : lift N 1 1.
49 axiom refl_conv: ∀P,A. Co P A A.
50 axiom sym_conv: ∀P,A,B. Co P A B → Co P B A.
51 axiom trans_conv: ∀P,A,B,C. Co P A B → Co P B C → Co P A C.
53 theorem prod_inv: ∀P,G,M,N. G ⊢_{P} M : N → ∀A,B.M = Prod A B →
54 ∃i,j,k. Co P N (Sort k) ∧ G ⊢_{P} A : Sort i ∧ A::G ⊢_{P} B : Sort j.
55 #Pts #G #M #N #t (elim t);
56 [#i #j #Aij #A #b #H destruct
57 |#G1 #P #i #t #_ #A #b #H destruct
58 |#G1 #P #Q #R #i #t1 #t2 #H1 #_ #A #B #Hl
59 cases (prod_lift … Hl) #A1 * #B1 * * #eqP #eqA #eqB
60 cases (H1 … eqP) #i * #j * #k * * #c1 #t3 #t4
61 @(ex_intro … i) @(ex_intro … j) @(ex_intro … k) <eqA <eqB %
62 [% [@(conv_lift … c1) |@(weak … t3 t2)]
65 |#G1 #A #B #i #j #k #Rijk #t1 #t2 #_ #_ #A1 #B1 #H destruct
66 @(ex_intro … i) @(ex_intro … j) @(ex_intro … k) % // % //
67 |#G1 #P #A #B #C #t1 #t2 #_ #_ #A1 #B1 #H destruct
68 |#G1 #P #A #B #i #t1 #t2 #_ #_ #A1 #B1 #H destruct
69 |#G1 #A #B #C #i #cBC #t1 #t2 #H1 #H2 #A1 #B1 #eqA
70 cases (H1 … eqA) #i * #j * #k * * #c1 #t3 #t4
71 @(ex_intro … i) @(ex_intro … j) @(ex_intro … k) % //
72 % // @(trans_conv Pts C B … c1) @sym_conv //
73 |#G1 #A #B #i #t1 #t2 #_ #_ #A1 #B1 #eqA destruct
77 theorem abs_inv: ∀P,G,M,N. G ⊢ _{P} M : N → ∀A,b.M = Lambda A b →
78 ∃i,B. Co P N (Prod A B) ∧ G ⊢_{P} Prod A B: Sort i ∧ A::G ⊢_{P} b : B.
79 #Pts #G #M #N #t (elim t);
80 [#i #j #Aij #A #b #H destruct
81 |#G1 #P #i #t #_ #A #b #H destruct
82 |#G1 #P #Q #R #i #t1 #t2 #H1 #_ #A #b #Hl
83 cases (lambda_lift … Hl) #A1 * #b1 * * #eqP #eqA #eqb
84 cases (H1 … eqP) #i * #B1 * * #c1 #t3 #t4
85 @(ex_intro … i) @(ex_intro … (lift B1 1 1)) <eqA <eqb %
86 [% [@(conv_lift … c1) |@(weak … t3 t2)]
89 |#G1 #A #B #i #j #k #Rijk #t1 #t2 #_ #_ #A1 #b #H destruct
90 |#G1 #P #A #B #C #t1 #t2 #_ #_ #A1 #b #H destruct
91 |#G1 #P #A #B #i #t1 #t2 #_ #_ #A1 #b #H destruct
92 @(ex_intro … i) @(ex_intro … A) % // % //
93 |#G1 #A #B #C #i #cBC #t1 #t2 #H1 #H2 #A1 #b #eqA
94 cases (H1 … eqA) #i * #B1 * * #c1 #t3 #t4
95 @(ex_intro … i) @(ex_intro … B1) % //
96 % // @(trans_conv Pts C B … c1) @sym_conv //
97 |#G1 #A #B #i #t1 #t2 #_ #_ #A1 #b #eqA destruct