1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "pts_dummy/ext_lambda.ma".
17 (* STRONGLY NORMALIZING TERMS *************************************************)
19 (* SN(t) holds when t is strongly normalizing *)
20 (* FG: we axiomatize it for now because we dont have reduction yet *)
23 (* lists of strongly normalizing terms *)
24 definition SNl ≝ all ? SN.
26 (* saturation conditions ******************************************************)
28 definition CR1 ≝ λ(P:?→Prop). ∀M. P M → SN M.
30 definition SAT0 ≝ λ(P:?→Prop). ∀n,l. SNl l → P (Appl (Sort n) l).
32 definition SAT1 ≝ λ(P:?->Prop). ∀i,l. SNl l → P (Appl (Rel i) l).
34 definition SAT2 ≝ λ(P:?→Prop). ∀N,L,M,l. SN N → SN L →
35 P (Appl M[0:=L] l) → P (Appl (Lambda N M) (L::l)).
37 definition SAT3 ≝ λ(P:?→Prop). ∀M,N,l. P (Appl (D (App M N)) l) →
38 P (Appl (D M) (N::l)).
40 definition SAT4 ≝ λ(P:?→Prop). ∀M. P M → P (D M).
42 lemma SAT0_sort: ∀P,n. SAT0 P → P (Sort n).
43 #P #n #HP @(HP n (nil ?) …) //
46 lemma SAT1_rel: ∀P,i. SAT1 P → P (Rel i).
47 #P #i #HP @(HP i (nil ?) …) //
50 lemma SAT3_1: ∀P,M,N. SAT3 P → P (D (App M N)) → P (App (D M) N).
51 #P #M #N #HP #H @(HP … ([])) @H
54 (* axiomatization *************************************************************)
56 axiom sn_sort: SAT0 SN.
58 axiom sn_rel: SAT1 SN.
60 axiom sn_beta: SAT2 SN.
62 axiom sn_dapp: SAT3 SN.
64 axiom sn_dummy: SAT4 SN.
66 axiom sn_lambda: ∀N,M. SN N → SN M → SN (Lambda N M).
68 axiom sn_prod: ∀N,M. SN N → SN M → SN (Prod N M).
70 axiom sn_inv_app_1: ∀M,N. SN (App M N) → SN M.