2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department of the University of Bologna, Italy.
8 \ / This file is distributed under the terms of the
9 \ / GNU General Public License Version 2
10 V_____________________________________________________________*)
12 include "basics/star.ma".
13 include "turing/turing.ma".
16 record Vector (A:Type[0]) (n:nat): Type[0] ≝
21 record tape (sig:FinSet): Type[0] ≝
26 inductive move : Type[0] ≝
33 record NTM (sig:FinSet): Type[1] ≝
35 tapes_no: nat; (* additional working tapes *)
36 trans : list ((states × (Vector (option sig) (S tapes_no))) ×
37 (states × (Vector (sig × move) (S tapes_no))));
41 accept : states → bool
44 record config (sig:FinSet) (M:NTM sig): Type[0] ≝
45 { state : states sig M;
46 tapes : Vector (tape sig) (S (tapes_no sig M))
50 definition option_hd ≝ λA.λl:list A.
56 lemma length_tail: ∀A,l. length ? (tail A l) = pred (length ? l).
60 definition vec_tail ≝ λA.λn.λv:Vector A n.
61 mk_Vector A (pred n) (tail A v) ?.
62 >length_tail >(len A n v) //
65 definition vec_cons ≝ λA.λa.λn.λv:Vector A n.
66 mk_Vector A (S n) (cons A a v) ?.
67 normalize >(len A n v) //
70 lemma length_map: ∀A,B,l.∀f:A→B. length ? (map ?? f l) = length ? l.
71 #A #B #l #f elim l // #a #tl #Hind normalize //
74 definition vec_map ≝ λA,B.λf:A→B.λn.λv:Vector A n.
75 mk_Vector B n (map ?? f v)
76 (trans_eq … (length_map …) (len A n v)).
78 definition tape_move ≝ λsig.λt: tape sig.λm:sig × move.
80 [ R ⇒ mk_tape sig ((\fst m)::(left ? t)) (tail ? (right ? t))
81 | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m)::(right ? t))
86 definition hds ≝ λsig.λM.λc:config sig M. vec_map ?? (option_hd ?) (tapes_no sig M) (\snd c).
88 definition tls ≝ λsig.λM.λc:config sig M.vec_map ?? (tail ?) (tapes_no sig M) (\snd c).
91 let rec compose A B C (f:A→B→C) l1 l2 on l1 ≝
97 |cons b tlB ⇒ (f a b)::compose A B C f tlA tlB
101 lemma length_compose: ∀A,B,C.∀f:A→B→C.∀l1,l2.
102 length C (compose A B C f l1 l2) =
103 min (length A l1) (length B l2).
104 #A #B #C #f #l1 elim l1 // #a #tlA #Hind #l2 cases l2 //
105 #b #tlB lapply (Hind tlB) normalize
106 cases (true_or_false (leb (length A tlA) (length B tlB))) #H >H
110 definition compose_vec ≝ λA,B,C.λf:A→B→C.λn.λvA:Vector A n.λvB:Vector B n.
111 mk_Vector C n (compose A B C f vA vB) ?.
112 >length_compose >(len A n vA) >(len B n vB) normalize
113 >(le_to_leb_true … (le_n n)) //
117 definition current_chars ≝ λsig.λM:NTM sig.λc:config sig M.
118 vec_map ?? (λt.option_hd ? (right ? t)) (S (tapes_no sig M)) (tapes ?? c).
120 let rec mem A (a:A) (l:list A) on l ≝
123 | cons hd tl ⇒ a=hd ∨ mem A a tl
126 definition reach ≝ λsig.λM:NTM sig.λc,c1:config sig M.
130 current_chars ?? c = l ∧
131 mem ? 〈〈q,l〉,〈q1,mvs〉〉 (trans ? M) ∧
133 tapes ?? c1 = (compose_vec ??? (tape_move sig) ? (tapes ?? c) mvs).
136 definition empty_tapes ≝ λsig.λn.
137 mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?.
138 elim n // normalize //
142 definition init ≝ λsig.λM:NTM sig.λi:(list sig).
145 (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))).
147 definition accepted ≝ λsig.λM:NTM sig.λw:(list sig).
148 ∃c. star ? (reach sig M) (init sig M w) c ∧
149 accept ?? (state ?? c) = true.