]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/lib/tutorial/chapter6.ma
- probe: new application to compute some data on the proof objects of
[helm.git] / matita / matita / lib / tutorial / chapter6.ma
1 (*
2 Formal Languages
3
4 In this chapter we shall apply our notion of DeqSet, and the list operations 
5 defined in Chapter 4 to formal languages. A formal language is an arbitrary set
6 of words over a given alphabet, that we shall represent as a predicate over words. 
7 *)
8 include "tutorial/chapter5.ma".
9
10 (* A word (or string) over an alphabet S is just a list of elements of S.*)
11 definition word ≝ λS:DeqSet.list S.
12
13 (* For any alphabet there is only one word of length 0, the empty word, which is 
14 denoted by ϵ .*) 
15
16 notation "ϵ" non associative with precedence 90 for @{ 'epsilon }.
17 interpretation "epsilon" 'epsilon = (nil ?).
18
19 (* The operation that consists in appending two words to form a new word, whose 
20 length is the sum of the lengths of the original words is called concatenation.
21 String concatenation is just the append operation over lists, hence there is no
22 point to define it. Similarly, many of its properties, such as the fact that 
23 concatenating a word with the empty word gives the original word, follow by 
24 general results over lists.
25 *)
26
27 (*
28 Operations over languages
29
30 Languages inherit all the basic operations for sets, namely union, intersection, 
31 complementation, substraction, and so on. In addition, we may define some new 
32 operations induced by string concatenation, and in particular the concatenation 
33 A · B of two languages A and B, the so called Kleene's star A* of A and the 
34 derivative of a language A w.r.t. a given character a. *)
35
36 definition cat : ∀S,l1,l2,w.Prop ≝ 
37   λS.λl1,l2.λw:word S.∃w1,w2.w1 @ w2 = w ∧ l1 w1 ∧ l2 w2.
38 (*
39 notation "a · b" non associative with precedence 60 for @{ 'middot $a $b}.
40 *)
41 interpretation "cat lang" 'middot a b = (cat ? a b).
42
43
44 (* Given a language l, the Kleene's star of l, denoted by l*, is the set of 
45 finite-length strings that can be generated by concatenating arbitrary strings of 
46 l. In other words, w belongs to l* is and only if there exists a list of strings 
47 w1,w2,...wk all belonging to l, such that l = w1w2...wk. 
48 We need to define the latter operations. The following flatten function takes in 
49 input a list of words and concatenates them together. *)
50
51 (* Already in the library
52 let rec flatten (S : DeqSet) (l : list (word S)) on l : word S ≝ 
53 match l with [ nil ⇒ [ ] | cons w tl ⇒ w @ flatten ? tl ].
54 *)
55
56 (* Given a list of words l and a language r, (conjunct l r) is true if and only if
57 all words in l are in r, that is for every w in l, r w holds. *)
58
59 let rec conjunct (S : DeqSet) (l : list (word S)) (r : word S → Prop) on l: Prop ≝
60 match l with [ nil ⇒ True | cons w tl ⇒ r w ∧ conjunct ? tl r ]. 
61
62 (* We are ready to give the formal definition of the Kleene's star of l:
63 a word w belongs to l* is and only if there exists a list of strings 
64 lw such that (conjunct lw l) and  l = flatten lw. *)
65
66
67 definition star ≝ λS.λl.λw:word S.∃lw.flatten ? lw = w ∧ conjunct ? lw l. 
68 notation "a ^ *" non associative with precedence 90 for @{ 'star $a}.
69 interpretation "star lang" 'star l = (star ? l).
70
71 (* The derivative of a language A with respect to a character a is the set of
72 all strings w such that aw is in A. *)
73
74 definition deriv ≝ λS.λA:word S → Prop.λa,w. A (a::w).
75
76 (* 
77 Language equalities
78
79 Equality between languages is just the usual extensional equality between
80 sets. The operation of concatenation behaves well with respect to this equality. *)
81
82 lemma cat_ext_l: ∀S.∀A,B,C:word S →Prop. 
83   A =1 C  → A · B =1 C · B.
84 #S #A #B #C #H #w % * #w1 * #w2 * * #eqw #inw1 #inw2
85 cases (H w1) /6/
86 qed.
87
88 lemma cat_ext_r: ∀S.∀A,B,C:word S →Prop. 
89   B =1 C → A · B =1 A · C.
90 #S #A #B #C #H #w % * #w1 * #w2 * * #eqw #inw1 #inw2
91 cases (H w2) /6/ 
92 qed.
93   
94 (* Concatenating a language with the empty language results in the
95 empty language. *) 
96 lemma cat_empty_l: ∀S.∀A:word S→Prop. ∅ · A =1 ∅.
97 #S #A #w % [|*] * #w1 * #w2 * * #_ *
98 qed.
99
100 (* Concatenating a language l with the singleton language containing the
101 empty string, results in the language l; that is {ϵ} is a left and right 
102 unit with respect to concatenation. *)
103
104 lemma epsilon_cat_r: ∀S.∀A:word S →Prop.
105   A · {ϵ} =1  A. 
106 #S #A #w %
107   [* #w1 * #w2 * * #eqw #inw1 normalize #eqw2 <eqw //
108   |#inA @(ex_intro … w) @(ex_intro … [ ]) /3/
109   ]
110 qed.
111
112 lemma epsilon_cat_l: ∀S.∀A:word S →Prop.
113   {ϵ} · A =1  A. 
114 #S #A #w %
115   [* #w1 * #w2 * * #eqw normalize #eqw2 <eqw <eqw2 //
116   |#inA @(ex_intro … ϵ) @(ex_intro … w) /3/
117   ]
118   qed.
119
120 (* Concatenation is distributive w.r.t. union. *)
121
122 lemma distr_cat_r: ∀S.∀A,B,C:word S →Prop.
123   (A ∪ B) · C =1  A · C ∪ B · C. 
124 #S #A #B #C #w %
125   [* #w1 * #w2 * * #eqw * /6/ |* * #w1 * #w2 * * /6/] 
126 qed.
127
128 lemma distr_cat_r_eps: ∀S.∀A,C:word S →Prop.
129   (A ∪ {ϵ}) · C =1  A · C ∪ C. 
130   #S #A #C @eqP_trans [|@distr_cat_r |@eqP_union_l @epsilon_cat_l]
131 qed.
132
133 (* The following is a major property of derivatives *)
134
135 lemma deriv_middot: ∀S,A,B,a. ¬ A ϵ → deriv S (A·B) a =1 (deriv S A a) · B.
136 #S #A #B #a #noteps #w normalize %
137   [* #w1 cases w1 
138     [* #w2 * * #_ #Aeps @False_ind /2/
139     |#b #w2 * #w3 * * whd in ⊢ ((??%?)→?); #H destruct
140      #H #H1 @(ex_intro … w2) @(ex_intro … w3) % // % //
141     ]
142   |* #w1 * #w2 * * #H #H1 #H2 @(ex_intro … (a::w1))
143    @(ex_intro … w2) % // % normalize //
144   ]
145 qed. 
146
147 (* 
148 Main Properties of Kleene's star
149
150 We conclude this section with some important properties of Kleene's
151 star that will be used in the following chapters. *)
152
153 lemma espilon_in_star: ∀S.∀A:word S → Prop.
154   A^* ϵ.
155 #S #A @(ex_intro … [ ]) normalize /2/
156 qed.
157
158 lemma cat_to_star:∀S.∀A:word S → Prop.
159   ∀w1,w2. A w1 → A^* w2 → A^* (w1@w2).
160 #S #A #w1 #w2 #Aw * #l * #H #H1 @(ex_intro … (w1::l)) 
161 % normalize destruct /2/ (* destruct added *)
162 qed.
163
164 lemma fix_star: ∀S.∀A:word S → Prop. 
165   A^* =1 A · A^* ∪ {ϵ}.
166 #S #A #w %
167   [* #l generalize in match w; -w cases l [normalize #w * /2/]
168    #w1 #tl #w * whd in ⊢ ((??%?)→?); #eqw whd in ⊢ (%→?); *
169    #w1A #cw1 %1 @(ex_intro … w1) @(ex_intro … (flatten S tl))
170    % destruct /2/ whd @(ex_intro … tl) /2/ (* destruct added *)
171   |* [2: whd in ⊢ (%→?); #eqw <eqw //]
172    * #w1 * #w2 * * #eqw <eqw @cat_to_star 
173   ]
174 qed.
175
176 lemma star_fix_eps : ∀S.∀A:word S → Prop.
177   A^* =1 (A - {ϵ}) · A^* ∪ {ϵ}.  
178 #S #A #w %
179   [* #l elim l 
180     [* whd in ⊢ ((??%?)→?); #eqw #_ %2 <eqw // 
181     |* [#tl #Hind * #H * #_ #H2 @Hind % [@H | //]
182        |#a #w1 #tl #Hind * whd in ⊢ ((??%?)→?); #H1 * #H2 #H3 %1 
183         @(ex_intro … (a::w1)) @(ex_intro … (flatten S tl)) %
184          [% [@H1 | normalize % /2/] |whd @(ex_intro … tl) /2/]
185        ]
186     ]
187   |* [* #w1 * #w2 * * #eqw * #H1 #_ <eqw @cat_to_star //
188      | whd in ⊢ (%→?); #H <H //
189      ]
190   ]
191 qed. 
192      
193 lemma star_epsilon: ∀S:DeqSet.∀A:word S → Prop.
194   A^* ∪ {ϵ} =1 A^*.
195 #S #A #w % /2/ * // 
196 qed.
197