1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "datatypes/constructors.ma".
16 include "logic/cprop_connectives.ma".
20 notation "''" non associative with precedence 90 for @{'}.
21 notation "''" non associative with precedence 90 for @{'}.
23 interpretation "" ' = ( (os_l ?)).
24 interpretation "" ' = ( (os_r ?)).
28 record half_ordered_set: Type ≝ {
30 wloss: ∀A,B:Type. (A → A → B) → A → A → B;
31 wloss_prop: (∀T,R,P,x,y.P x y = wloss T R P x y) ∨ (∀T,R,P,x,y.P y x = wloss T R P x y);
32 hos_excess_: hos_carr → hos_carr → CProp;
33 hos_coreflexive: coreflexive ? (wloss ?? hos_excess_);
34 hos_cotransitive: cotransitive ? (wloss ?? hos_excess_)
37 definition hos_excess ≝ λO:half_ordered_set.wloss O ?? (hos_excess_ O).
39 definition dual_hos : half_ordered_set → half_ordered_set.
42 | apply (λT,R,f,x,y.wloss h T R f y x);
43 | intros; cases (wloss_prop h);[right|left]intros;apply H;
44 | apply (hos_excess_ h);
45 | apply (hos_coreflexive h);
46 | intros 4 (x y z H); simplify in H ⊢ %; cases (hos_cotransitive h y x z H);
47 [right|left] assumption;]
50 record ordered_set : Type ≝ {
51 os_l : half_ordered_set
54 definition os_r : ordered_set → half_ordered_set.
55 intro o; apply (dual_hos (os_l o)); qed.
57 lemma half2full : half_ordered_set → ordered_set.
59 constructor 1; apply hos;
62 definition Type_of_ordered_set : ordered_set → Type.
63 intro o; apply (hos_carr (os_l o)); qed.
65 definition Type_of_ordered_set_dual : ordered_set → Type.
66 intro o; apply (hos_carr (os_r o)); qed.
68 coercion Type_of_ordered_set_dual.
69 coercion Type_of_ordered_set.
71 notation "a ≰≰ b" non associative with precedence 45 for @{'nleq_low $a $b}.
72 interpretation "Ordered half set excess" 'nleq_low a b = (hos_excess ? a b).
74 interpretation "Ordered set excess (dual)" 'ngeq a b = (hos_excess (os_r ?) a b).
75 interpretation "Ordered set excess" 'nleq a b = (hos_excess (os_l ?) a b).
77 notation "'exc_coreflexive'" non associative with precedence 90 for @{'exc_coreflexive}.
78 notation "'cxe_coreflexive'" non associative with precedence 90 for @{'cxe_coreflexive}.
80 interpretation "exc_coreflexive" 'exc_coreflexive = ((hos_coreflexive (os_l ?))).
81 interpretation "cxe_coreflexive" 'cxe_coreflexive = ((hos_coreflexive (os_r ?))).
83 notation "'exc_cotransitive'" non associative with precedence 90 for @{'exc_cotransitive}.
84 notation "'cxe_cotransitive'" non associative with precedence 90 for @{'cxe_cotransitive}.
86 interpretation "exc_cotransitive" 'exc_cotransitive = ((hos_cotransitive (os_l ?))).
87 interpretation "cxe_cotransitive" 'cxe_cotransitive = ((hos_cotransitive (os_r ?))).
89 (* Definition 2.2 (3) *)
90 definition le ≝ λE:half_ordered_set.λa,b:E. ¬ (a ≰≰ b).
92 notation "hvbox(a break ≤≤ b)" non associative with precedence 45 for @{ 'leq_low $a $b }.
93 interpretation "Half ordered set greater or equal than" 'leq_low a b = ((le ? a b)).
95 interpretation "Ordered set greater or equal than" 'geq a b = ((le (os_r ?) a b)).
96 interpretation "Ordered set less or equal than" 'leq a b = ((le (os_l ?) a b)).
98 lemma hle_reflexive: ∀E.reflexive ? (le E).
99 unfold reflexive; intros 3; apply (hos_coreflexive ? x H);
102 notation "'le_reflexive'" non associative with precedence 90 for @{'le_reflexive}.
103 notation "'ge_reflexive'" non associative with precedence 90 for @{'ge_reflexive}.
105 interpretation "le reflexive" 'le_reflexive = (hle_reflexive (os_l ?)).
106 interpretation "ge reflexive" 'ge_reflexive = (hle_reflexive (os_r ?)).
109 lemma test_le_ge_convertible :∀o:ordered_set.∀x,y:o. x ≤ y → y ≥ x.
110 intros; assumption; qed.
112 lemma test_ge_reflexive :∀o:ordered_set.∀x:o. x ≥ x.
113 intros; apply ge_reflexive. qed.
115 lemma test_le_reflexive :∀o:ordered_set.∀x:o. x ≤ x.
116 intros; apply le_reflexive. qed.
119 lemma hle_transitive: ∀E.transitive ? (le E).
120 unfold transitive; intros 7 (E x y z H1 H2 H3); cases (hos_cotransitive E x z y H3) (H4 H4);
121 [cases (H1 H4)|cases (H2 H4)]
124 notation "'le_transitive'" non associative with precedence 90 for @{'le_transitive}.
125 notation "'ge_transitive'" non associative with precedence 90 for @{'ge_transitive}.
127 interpretation "le transitive" 'le_transitive = (hle_transitive (os_l ?)).
128 interpretation "ge transitive" 'ge_transitive = (hle_transitive (os_r ?)).
131 lemma exc_hle_variance:
132 ∀O:half_ordered_set.∀a,b,a',b':O.a ≰≰ b → a ≤≤ a' → b' ≤≤ b → a' ≰≰ b'.
133 intros (O a b a1 b1 Eab Laa1 Lb1b);
134 cases (hos_cotransitive ? a b a1 Eab) (H H); [cases (Laa1 H)]
135 cases (hos_cotransitive ? ?? b1 H) (H1 H1); [assumption]
139 notation "'exc_le_variance'" non associative with precedence 90 for @{'exc_le_variance}.
140 notation "'exc_ge_variance'" non associative with precedence 90 for @{'exc_ge_variance}.
142 interpretation "exc_le_variance" 'exc_le_variance = (exc_hle_variance (os_l ?)).
143 interpretation "exc_ge_variance" 'exc_ge_variance = (exc_hle_variance (os_r ?)).
145 definition square_exc ≝
146 λO:half_ordered_set.λx,y:O×O.\fst x ≰≰ \fst y ∨ \snd x ≰≰ \snd y.
148 lemma square_half_ordered_set: half_ordered_set → half_ordered_set.
150 apply (mk_half_ordered_set (O × O));
152 |2: intros; cases (wloss_prop O); [left|right] intros; apply H;
153 |3: apply (square_exc O);
154 |4: intro x; cases (wloss_prop O); rewrite < (H ?? (square_exc O) x x); clear H;
155 cases x; clear x; unfold square_exc; intro H; cases H; clear H; simplify in H1;
156 [1,3: apply (hos_coreflexive O h H1);
157 |*: apply (hos_coreflexive O h1 H1);]
158 |5: intros 3 (x0 y0 z0); cases (wloss_prop O);
159 do 3 rewrite < (H ?? (square_exc O)); clear H; cases x0; cases y0; cases z0; clear x0 y0 z0;
160 simplify; intro H; cases H; clear H;
161 [1: cases (hos_cotransitive ? h h2 h4 H1); [left;left|right;left] assumption;
162 |2: cases (hos_cotransitive ? h1 h3 h5 H1); [left;right|right;right] assumption;
163 |3: cases (hos_cotransitive ? h2 h h4 H1); [right;left|left;left] assumption;
164 |4: cases (hos_cotransitive ? h3 h1 h5 H1); [right;right|left;right] assumption;]]
167 lemma square_ordered_set: ordered_set → ordered_set.
168 intro O; constructor 1; apply (square_half_ordered_set (os_l O));
171 notation "s 2 \atop \nleq" non associative with precedence 90
172 for @{ 'square_os $s }.
173 notation > "s 'squareO'" non associative with precedence 90
174 for @{ 'squareO $s }.
175 interpretation "ordered set square" 'squareO s = (square_ordered_set s).
176 interpretation "ordered set square" 'square_os s = (square_ordered_set s).
178 definition os_subset ≝ λO:ordered_set.λP,Q:O→Prop.∀x:O.P x → Q x.
180 interpretation "ordered set subset" 'subseteq a b = (os_subset ? a b).