1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 include "nat/primes.ma".
16 (* include "nat/ord.ma". *)
17 include "nat/generic_iter_p.ma".
18 (* include "nat/count.ma". necessary just to use bool_to_nat and bool_to_nat_andb*)
19 include "nat/iteration2.ma".
21 (* pi_p on nautral numbers is a specialization of iter_p_gen *)
22 definition pi_p: nat \to (nat \to bool) \to (nat \to nat) \to nat \def
23 \lambda n, p, g. (iter_p_gen n p nat g (S O) times).
26 notation < "(mstyle scriptlevel 1 scriptsizemultiplier 1.7(Π)
32 non associative with precedence 65 for
33 @{ 'product $n (λ${ident i}:$xx1.$p) (λ${ident i}:$xx2.$f) }.
35 notation < "(mstyle scriptlevel 1 scriptsizemultiplier 1.7(Π)
39 non associative with precedence 65 for
40 @{ 'product $n (λ_:$xx1.$xx3) (λ${ident i}:$xx2.$f) }.
42 interpretation "big product" 'product n p f = (pi_p n p f).
44 notation > "'Pi' (ident x) < n | p . term 46 f"
45 non associative with precedence 65
46 for @{ 'product $n (λ${ident x}.$p) (λ${ident x}.$f) }.
48 notation > "'Pi' (ident x) ≤ n | p . term 46 f"
49 non associative with precedence 65
50 for @{ 'product (S $n) (λ${ident x}.$p) (λ${ident x}.$f) }.
52 notation > "'Pi' (ident x) < n . term 46 f"
53 non associative with precedence 65
54 for @{ 'product $n (λ_.true) (λ${ident x}.$f) }.
57 theorem true_to_pi_p_Sn: ∀n,p,g.
58 p n = true \to pi_p (S n) p g = (g n)*(pi_p n p g).
61 apply true_to_iter_p_gen_Sn.
65 theorem false_to_pi_p_Sn:
66 \forall n:nat. \forall p:nat \to bool. \forall g:nat \to nat.
67 p n = false \to pi_p (S n) p g = pi_p n p g.
70 apply false_to_iter_p_gen_Sn.
74 theorem eq_pi_p: \forall p1,p2:nat \to bool.
75 \forall g1,g2: nat \to nat.\forall n.
76 (\forall x. x < n \to p1 x = p2 x) \to
77 (\forall x. x < n \to g1 x = g2 x) \to
78 pi_p n p1 g1 = pi_p n p2 g2.
85 theorem eq_pi_p1: \forall p1,p2:nat \to bool.
86 \forall g1,g2: nat \to nat.\forall n.
87 (\forall x. x < n \to p1 x = p2 x) \to
88 (\forall x. x < n \to p1 x = true \to g1 x = g2 x) \to
89 pi_p n p1 g1 = pi_p n p2 g2.
97 \forall g: nat \to nat.\forall n.pi_p n (\lambda x.false) g = S O.
100 apply iter_p_gen_false.
103 theorem pi_p_times: \forall n,k:nat.\forall p:nat \to bool.
104 \forall g: nat \to nat.
106 = pi_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) * pi_p n p g.
109 apply (iter_p_gen_plusA nat n k p g (S O) times)
114 | apply associative_times
118 theorem false_to_eq_pi_p: \forall n,m:nat.n \le m \to
119 \forall p:nat \to bool.
120 \forall g: nat \to nat. (\forall i:nat. n \le i \to i < m \to
121 p i = false) \to pi_p m p g = pi_p n p g.
124 apply (false_to_eq_iter_p_gen);
128 theorem or_false_eq_SO_to_eq_pi_p:
129 \forall n,m:nat.\forall p:nat \to bool.
130 \forall g: nat \to nat.
131 n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false \lor g i = S O)
132 \to pi_p m p g = pi_p n p g.
135 apply or_false_eq_baseA_to_eq_iter_p_gen
136 [intros.simplify.rewrite < plus_n_O.reflexivity
144 \forall p1,p2:nat \to bool.
145 \forall g: nat \to nat \to nat.
147 (\lambda x.andb (p1 (div x m)) (p2 (mod x m)))
148 (\lambda x.g (div x m) (mod x m)) =
150 (\lambda x.pi_p m p2 (g x)).
153 apply (iter_p_gen2 n m p1 p2 nat g (S O) times)
155 | apply associative_times
164 \forall p1:nat \to bool.
165 \forall p2:nat \to nat \to bool.
166 \forall g: nat \to nat \to nat.
168 (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m)))
169 (\lambda x.g (div x m) (mod x m)) =
171 (\lambda x.pi_p m (p2 x) (g x)).
174 apply (iter_p_gen2' n m p1 p2 nat g (S O) times)
176 | apply associative_times
183 lemma pi_p_gi: \forall g: nat \to nat.
184 \forall n,i.\forall p:nat \to bool.i < n \to p i = true \to
185 pi_p n p g = g i * pi_p n (\lambda x. andb (p x) (notb (eqb x i))) g.
188 apply (iter_p_gen_gi)
190 | apply associative_times
200 \forall g,h,h1: nat \to nat.\forall n,n1.
201 \forall p1,p2:nat \to bool.
202 (\forall i. i < n \to p1 i = true \to p2 (h i) = true) \to
203 (\forall i. i < n \to p1 i = true \to h1 (h i) = i) \to
204 (\forall i. i < n \to p1 i = true \to h i < n1) \to
205 (\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to
206 (\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to
207 (\forall j. j < n1 \to p2 j = true \to h1 j < n) \to
208 pi_p n p1 (\lambda x.g(h x)) = pi_p n1 p2 g.
211 apply (eq_iter_p_gen_gh nat (S O) times ? ? ? g h h1 n n1 p1 p2)
213 | apply associative_times
228 \forall n:nat. \forall p:nat \to bool. \forall g1,g2:nat \to nat.
229 (\forall i. i < n \to p i = true \to g1 i \le g2 i ) \to
230 pi_p n p g1 \le pi_p n p g2.
234 |apply (bool_elim ? (p n1));intros
235 [rewrite > true_to_pi_p_Sn
236 [rewrite > true_to_pi_p_Sn in ⊢ (? ? %)
238 [apply H1[apply le_n|assumption]
241 apply H1[apply le_S.assumption|assumption]
247 |rewrite > false_to_pi_p_Sn
248 [rewrite > false_to_pi_p_Sn in ⊢ (? ? %)
251 apply H1[apply le_S.assumption|assumption]
260 theorem exp_sigma_p: \forall n,a,p.
261 pi_p n p (\lambda x.a) = (exp a (sigma_p n p (\lambda x.S O))).
265 |apply (bool_elim ? (p n1))
267 rewrite > true_to_pi_p_Sn
268 [rewrite > true_to_sigma_p_Sn
277 rewrite > false_to_pi_p_Sn
278 [rewrite > false_to_sigma_p_Sn
288 theorem exp_sigma_p1: \forall n,a,p,f.
289 pi_p n p (\lambda x.(exp a (f x))) = (exp a (sigma_p n p f)).
293 |apply (bool_elim ? (p n1))
295 rewrite > true_to_pi_p_Sn
296 [rewrite > true_to_sigma_p_Sn
299 rewrite > exp_plus_times.
306 rewrite > false_to_pi_p_Sn
307 [rewrite > false_to_sigma_p_Sn
317 theorem times_pi_p: \forall n,p,f,g.
318 pi_p n p (\lambda x.f x*g x) = pi_p n p f * pi_p n p g.
321 [simplify.reflexivity
322 |apply (bool_elim ? (p n1))
324 rewrite > true_to_pi_p_Sn
325 [rewrite > true_to_pi_p_Sn
326 [rewrite > true_to_pi_p_Sn
327 [rewrite > H.autobatch
335 rewrite > false_to_pi_p_Sn
336 [rewrite > false_to_pi_p_Sn
337 [rewrite > false_to_pi_p_Sn;assumption
346 theorem pi_p_SO: \forall n,p.
347 pi_p n p (\lambda i.S O) = S O.
350 |simplify.elim (p n1)
351 [simplify.rewrite < plus_n_O.assumption
357 theorem exp_pi_p: \forall n,m,p,f.
358 pi_p n p (\lambda x.exp (f x) m) = exp (pi_p n p f) m.
361 [simplify.apply pi_p_SO
363 rewrite > times_pi_p.
369 theorem exp_times_pi_p: \forall n,m,k,p,f.
370 pi_p n p (\lambda x.exp k (m*(f x))) =
371 exp (pi_p n p (\lambda x.exp k (f x))) m.
373 apply (trans_eq ? ? (pi_p n p (\lambda x.(exp (exp k (f x)) m))))
374 [apply eq_pi_p;intros
376 |apply sym_eq.rewrite > sym_times.
385 \forall g: nat \to nat.
386 \forall h2:nat \to nat \to nat.
387 \forall h11,h12:nat \to nat.
389 \forall p1,p21:nat \to bool.
390 \forall p22:nat \to nat \to bool.
391 (\forall x. x < k \to p1 x = true \to
392 p21 (h11 x) = true ∧ p22 (h11 x) (h12 x) = true
393 \land h2 (h11 x) (h12 x) = x
394 \land (h11 x) < n \land (h12 x) < m) \to
395 (\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to
396 p1 (h2 i j) = true \land
397 h11 (h2 i j) = i \land h12 (h2 i j) = j
400 Pi z < k | p1 z. g z =
401 Pi x < n | p21 x. Pi y < m | p22 x y.g (h2 x y).
404 pi_p n p21 (\lambda x:nat.pi_p m (p22 x) (\lambda y. g (h2 x y))).
406 unfold pi_p.unfold pi_p.
407 apply (iter_p_gen_knm nat (S O) times sym_times assoc_times ? ? ? h11 h12)
408 [intros.apply sym_eq.apply times_n_SO.
415 \forall g: nat \to nat \to nat.
416 \forall h11,h12,h21,h22: nat \to nat \to nat.
418 \forall p11,p21:nat \to bool.
419 \forall p12,p22:nat \to nat \to bool.
420 (\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to
421 p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true
422 \land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j
423 \land h11 i j < n1 \land h12 i j < m1) \to
424 (\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to
425 p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true
426 \land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j
427 \land (h21 i j) < n2 \land (h22 i j) < m2) \to
429 (\lambda x:nat .pi_p m1 (p12 x) (\lambda y. g x y)) =
431 (\lambda x:nat .pi_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))).
433 unfold pi_p.unfold pi_p.
434 apply (iter_p_gen_2_eq ? ? ? sym_times assoc_times ? ? ? ? h21 h22)
435 [intros.apply sym_eq.apply times_n_SO.
442 \forall g: nat \to nat \to nat.
444 \forall p11,p21:nat \to bool.
445 \forall p12,p22:nat \to nat \to bool.
446 (\forall x,y. x < n \to y < m \to
447 (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to
448 pi_p n p11 (\lambda x:nat.pi_p m (p12 x) (\lambda y. g x y)) =
449 pi_p m p21 (\lambda y:nat.pi_p n (p22 y) (\lambda x. g x y)).
451 unfold pi_p.unfold pi_p.
452 apply (iter_p_gen_iter_p_gen ? ? ? sym_times assoc_times)
453 [intros.apply sym_eq.apply times_n_SO.