]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/nlibrary/basics/functions.ma
some results on co-composition ...
[helm.git] / matita / matita / nlibrary / basics / functions.ma
1 (**************************************************************************)
2 (*       ___                                                                *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
8 (*      ||A||       E.Tassi, S.Zacchiroli                                 *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU Lesser General Public License Version 2.1         *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Plogic/equality.ma".
16 include "Plogic/connectives.ma".
17
18 ndefinition compose ≝
19   λA,B,C:Type.λf:B→C.λg:A→B.λx:A.
20   f (g x).
21
22 interpretation "function composition" 'compose f g = (compose ? ? ? f g).
23
24 ndefinition injective: ∀A,B:Type[0].∀ f:A→B.Prop
25 ≝ λA,B.λf.∀x,y:A.f x = f y → x=y.
26
27 ndefinition surjective: ∀A,B:Type[0].∀f:A→B.Prop
28 ≝λA,B.λf.∀z:B.∃x:A.z = f x.
29
30 ndefinition symmetric: ∀A:Type[0].∀f:A→A→A.Prop 
31 ≝ λA.λf.∀x,y.f x y = f y x.
32
33 ndefinition symmetric2: ∀A,B:Type[0].∀f:A→A→B.Prop
34 ≝ λA,B.λf.∀x,y.f x y = f y x.
35
36 ndefinition associative: ∀A:Type[0].∀f:A→A→A.Prop
37 ≝ λA.λf.∀x,y,z.f (f x y) z = f x (f y z).
38
39 (*
40 ntheorem eq_f_g_h:
41   ∀A,B,C,D:Type[0].∀f:C→D.∀g:B→C.∀h:A→B.
42   f∘(g∘h) = (f∘g)∘h.
43   //.
44 nqed. *)
45
46 (* functions and relations *)
47 ndefinition monotonic : ∀A:Type.∀R:A→A→Prop.
48 ∀f:A→A.Prop ≝
49 λA.λR.λf.∀x,y:A.R x y → R (f x) (f y).
50
51 (* functions and functions *)
52 ndefinition distributive: ∀A:Type[0].∀f,g:A→A→A.Prop
53 ≝ λA.λf,g.∀x,y,z:A. f x (g y z) = g (f x y) (f x z).
54
55 ndefinition distributive2: ∀A,B:Type[0].∀f:A→B→B.∀g:B→B→B.Prop
56 ≝ λA,B.λf,g.∀x:A.∀y,z:B. f x (g y z) = g (f x y) (f x z).
57
58 nlemma injective_compose : ∀A,B,C,f,g.
59 injective A B f → injective B C g → injective A C (λx.g (f x)).
60 /3/.
61 nqed.