1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 include "logic/pts.ma".
17 inductive True: CProp[0] ≝
20 inductive False: CProp[0] ≝.
22 definition Not: CProp[0] → CProp[0] ≝
25 interpretation "logical ot" 'not x = (Not x).
27 inductive And (A,B:CProp[0]) : CProp[0] ≝
28 conj : A → B → And A B.
30 interpretation "logical and" 'and x y = (And x y).
32 inductive Or (A,B:CProp[0]) : CProp[0] ≝
33 or_introl : A → Or A B
34 | or_intror : B → Or A B.
36 interpretation "logical or" 'or x y = (Or x y).
38 inductive Ex (A:Type[0]) (P:A → CProp[0]) : CProp[0] ≝
39 ex_intro: ∀x:A. P x → Ex A P.
42 inductive Ex1 (A:Type[1]) (P:A → CProp[0]) : CProp[1] ≝
43 ex_intro1: ∀x:A. P x → Ex1 A P.
45 interpretation "exists1" 'exists x = (Ex1 ? x).
46 interpretation "exists" 'exists x = (Ex ? x).
48 inductive sigma (A : Type[0]) (P : A → CProp[0]) : Type[0] ≝
49 sig_intro : ∀x:A.P x → sigma A P.
51 interpretation "sigma" 'sigma \eta.p = (sigma ? p).
53 record iff (A,B: CProp[0]) : CProp[0] ≝
58 notation > "hvbox(a break \liff b)"
59 left associative with precedence 25
62 notation "hvbox(a break \leftrightarrow b)"
63 left associative with precedence 25
66 interpretation "logical iff" 'iff x y = (iff x y).