1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (******************* SETS OVER TYPES *****************)
17 include "logic/connectives.ma".
19 nrecord powerclass (A: Type[0]) : Type[1] ≝ { mem: A → CProp[0] }.
21 interpretation "mem" 'mem a S = (mem ? S a).
22 interpretation "powerclass" 'powerset A = (powerclass A).
23 interpretation "subset construction" 'subset \eta.x = (mk_powerclass ? x).
25 ndefinition subseteq ≝ λA.λU,V.∀a:A. a ∈ U → a ∈ V.
26 interpretation "subseteq" 'subseteq U V = (subseteq ? U V).
28 ndefinition overlaps ≝ λA.λU,V.∃x:A.x ∈ U ∧ x ∈ V.
29 interpretation "overlaps" 'overlaps U V = (overlaps ? U V).
31 ndefinition intersect ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ x ∈ V }.
32 interpretation "intersect" 'intersects U V = (intersect ? U V).
34 ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }.
35 interpretation "union" 'union U V = (union ? U V).
37 ndefinition substract ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ ¬ x ∈ V }.
38 interpretation "substract" 'minus U V = (substract ? U V).
41 ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }.
43 ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }.
45 ndefinition full_set: ∀A. Ω^A ≝ λA.{ x | True }.
47 nlemma subseteq_refl: ∀A.∀S: Ω^A. S ⊆ S.
50 nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U.
53 include "properties/relations1.ma".
55 ndefinition seteq: ∀A. equivalence_relation1 (Ω^A).
56 #A; @(λS,S'. S ⊆ S' ∧ S' ⊆ S); /2/; ##[ #A B; *; /3/]
57 #S T U; *; #H1 H2; *; /4/;
60 include "sets/setoids1.ma".
62 ndefinition singleton ≝ λA:setoid.λa:A.{ x | a = x }.
63 interpretation "singl" 'singl a = (singleton ? a).
65 (* this has to be declared here, so that it is combined with carr *)
66 ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?).
68 ndefinition powerclass_setoid: Type[0] → setoid1.
72 alias symbol "hint_decl" = "hint_decl_Type2".
73 unification hint 0 ≔ A;
74 R ≟ (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A)))
75 (*--------------------------------------------------*)⊢
78 (************ SETS OVER SETOIDS ********************)
80 include "logic/cprop.ma".
82 nrecord ext_powerclass (A: setoid) : Type[1] ≝ {
83 ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso...
84 forse lo si vorrebbe dichiarato con un target più lasco
85 ma la sintassi :> non lo supporta *)
86 ext_prop: ∀x,x':A. x=x' → (x ∈ ext_carr) = (x' ∈ ext_carr)
89 notation > "𝛀 ^ term 90 A" non associative with precedence 70
90 for @{ 'ext_powerclass $A }.
92 notation < "Ω term 90 A \atop ≈" non associative with precedence 90
93 for @{ 'ext_powerclass $A }.
95 interpretation "extensional powerclass" 'ext_powerclass a = (ext_powerclass a).
97 ndefinition Full_set: ∀A. 𝛀^A.
98 #A; @[ napply A | #x; #x'; #H; napply refl1]
100 ncoercion Full_set: ∀A. ext_powerclass A ≝ Full_set on A: setoid to ext_powerclass ?.
102 ndefinition ext_seteq: ∀A. equivalence_relation1 (𝛀^A).
103 #A; @ [ napply (λS,S'. S = S') ] /2/.
106 ndefinition ext_powerclass_setoid: setoid → setoid1.
110 unification hint 0 ≔ A;
111 R ≟ (mk_setoid1 (𝛀^A) (eq1 (ext_powerclass_setoid A)))
112 (* ----------------------------------------------------- *) ⊢
113 carr1 R ≡ ext_powerclass A.
115 nlemma mem_ext_powerclass_setoid_is_morph:
116 ∀A. (setoid1_of_setoid A) ⇒_1 ((𝛀^A) ⇒_1 CPROP).
117 #A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S));
118 #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H
119 [ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/.
122 unification hint 0 ≔ AA : setoid, S : 𝛀^AA, x : carr AA;
125 TT ≟ (mk_unary_morphism1 ??
126 (λx:carr1 (setoid1_of_setoid ?).
127 mk_unary_morphism1 ??
128 (λS:carr1 (ext_powerclass_setoid ?). x ∈ (ext_carr ? S))
129 (prop11 ?? (fun11 ?? (mem_ext_powerclass_setoid_is_morph AA) x)))
130 (prop11 ?? (mem_ext_powerclass_setoid_is_morph AA))),
131 T2 ≟ (ext_powerclass_setoid AA)
132 (*---------------------------------------------------------------------------*) ⊢
133 fun11 T2 CPROP (fun11 (setoid1_of_setoid AA) (unary_morphism1_setoid1 T2 CPROP) TT x) S ≡ mem A SS x.
135 nlemma set_ext : ∀S.∀A,B:Ω^S.A =_1 B → ∀x:S.(x ∈ A) =_1 (x ∈ B).
136 #S A B; *; #H1 H2 x; @; ##[ napply H1 | napply H2] nqed.
138 nlemma ext_set : ∀S.∀A,B:Ω^S.(∀x:S. (x ∈ A) = (x ∈ B)) → A = B.
139 #S A B H; @; #x; ncases (H x); #H1 H2; ##[ napply H1 | napply H2] nqed.
141 nlemma subseteq_is_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 CPROP.
142 #A; napply (mk_binary_morphism1 … (λS,S':𝛀^A. S ⊆ S'));
143 #a; #a'; #b; #b'; *; #H1; #H2; *; /5/ by mk_iff, sym1, subseteq_trans;
147 nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A.
148 #S A B; @ (A ∩ B); #x y Exy; @; *; #H1 H2; @;
149 ##[##1,2: napply (. Exy^-1╪_1#); nassumption;
150 ##|##3,4: napply (. Exy‡#); nassumption]
153 alias symbol "hint_decl" = "hint_decl_Type1".
154 unification hint 0 ≔ A : setoid, B,C : 𝛀^A;
158 R ≟ (mk_ext_powerclass ?
159 (ext_carr ? B ∩ ext_carr ? C)
160 (ext_prop ? (intersect_is_ext ? B C)))
161 (* ------------------------------------------*) ⊢
162 ext_carr A R ≡ intersect AA BB CC.
164 nlemma intersect_is_morph: ∀A. Ω^A ⇒_1 Ω^A ⇒_1 Ω^A.
165 #A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S'));
166 #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/.
169 alias symbol "hint_decl" = "hint_decl_Type1".
170 unification hint 0 ≔ A : Type[0], B,C : Ω^A;
171 T ≟ powerclass_setoid A,
172 R ≟ mk_unary_morphism1 ??
173 (λX. mk_unary_morphism1 ??
174 (λY.X ∩ Y) (prop11 ?? (fun11 ?? (intersect_is_morph A) X)))
175 (prop11 ?? (intersect_is_morph A))
176 (*------------------------------------------------------------------------*) ⊢
177 fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C ≡ intersect A B C.
179 interpretation "prop21 ext" 'prop2 l r =
180 (prop11 (ext_powerclass_setoid ?)
181 (unary_morphism1_setoid1 (ext_powerclass_setoid ?) ?) ? ?? l ?? r).
183 nlemma intersect_is_ext_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A.
184 #A; napply (mk_binary_morphism1 … (intersect_is_ext …));
185 #a; #a'; #b; #b'; #Ha; #Hb; napply (prop11 … (intersect_is_morph A)); nassumption.
189 AA : setoid, B,C : 𝛀^AA;
191 T ≟ ext_powerclass_setoid AA,
192 R ≟ (mk_unary_morphism1 ?? (λX:𝛀^AA.
193 mk_unary_morphism1 ?? (λY:𝛀^AA.
195 (ext_carr ? X ∩ ext_carr ? Y)
196 (ext_prop AA (intersect_is_ext ? X Y)))
197 (prop11 ?? (fun11 ?? (intersect_is_ext_morph AA) X)))
198 (prop11 ?? (intersect_is_ext_morph AA))) ,
201 (* ---------------------------------------------------------------------------------------*) ⊢
202 ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ intersect A BB CC.
206 nlemma union_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A).
207 #X; napply (mk_binary_morphism1 … (λA,B.A ∪ B));
208 #A1 A2 B1 B2 EA EB; napply ext_set; #x;
209 nchange in match (x ∈ (A1 ∪ B1)) with (?∨?);
210 napply (.= (set_ext ??? EA x)‡#);
211 napply (.= #‡(set_ext ??? EB x)); //;
214 nlemma union_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A.
215 #S A B; @ (A ∪ B); #x y Exy; @; *; #H1;
216 ##[##1,3: @; ##|##*: @2 ]
217 ##[##1,3: napply (. (Exy^-1)╪_1#)
218 ##|##2,4: napply (. Exy╪_1#)]
222 alias symbol "hint_decl" = "hint_decl_Type1".
223 unification hint 0 ≔ A : setoid, B,C : 𝛀^A;
227 R ≟ mk_ext_powerclass ?
228 (ext_carr ? B ∪ ext_carr ? C) (ext_prop ? (union_is_ext ? B C))
229 (*-------------------------------------------------------------------------*) ⊢
230 ext_carr A R ≡ union AA BB CC.
232 unification hint 0 ≔ S:Type[0], A,B:Ω^S;
233 T ≟ powerclass_setoid S,
234 MM ≟ mk_unary_morphism1 ??
235 (λA.mk_unary_morphism1 ??
236 (λB.A ∪ B) (prop11 ?? (fun11 ?? (union_is_morph S) A)))
237 (prop11 ?? (union_is_morph S))
238 (*--------------------------------------------------------------------------*) ⊢
239 fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A ∪ B.
241 nlemma union_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A.
242 #A; napply (mk_binary_morphism1 … (union_is_ext …));
243 #x1 x2 y1 y2 Ex Ey; napply (prop11 … (union_is_morph A)); nassumption.
247 AA : setoid, B,C : 𝛀^AA;
249 T ≟ ext_powerclass_setoid AA,
250 R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA.
251 mk_unary_morphism1 ?? (λY:𝛀^AA.
253 (ext_carr ? X ∪ ext_carr ? Y) (ext_prop AA (union_is_ext ? X Y)))
254 (prop11 ?? (fun11 ?? (union_is_ext_morph AA) X)))
255 (prop11 ?? (union_is_ext_morph AA)),
258 (*------------------------------------------------------*) ⊢
259 ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ union A BB CC.
263 nlemma substract_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A).
264 #X; napply (mk_binary_morphism1 … (λA,B.A - B));
265 #A1 A2 B1 B2 EA EB; napply ext_set; #x;
266 nchange in match (x ∈ (A1 - B1)) with (?∧?);
267 napply (.= (set_ext ??? EA x)‡#); @; *; #H H1; @; //; #H2; napply H1;
268 ##[ napply (. (set_ext ??? EB x)); ##| napply (. (set_ext ??? EB^-1 x)); ##] //;
271 nlemma substract_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A.
272 #S A B; @ (A - B); #x y Exy; @; *; #H1 H2; @; ##[##2,4: #H3; napply H2]
273 ##[##1,4: napply (. Exy╪_1#); // ##|##2,3: napply (. Exy^-1╪_1#); //]
276 alias symbol "hint_decl" = "hint_decl_Type1".
277 unification hint 0 ≔ A : setoid, B,C : 𝛀^A;
281 R ≟ mk_ext_powerclass ?
282 (ext_carr ? B - ext_carr ? C)
283 (ext_prop ? (substract_is_ext ? B C))
284 (*---------------------------------------------------*) ⊢
285 ext_carr A R ≡ substract AA BB CC.
287 unification hint 0 ≔ S:Type[0], A,B:Ω^S;
288 T ≟ powerclass_setoid S,
289 MM ≟ mk_unary_morphism1 ??
290 (λA.mk_unary_morphism1 ??
291 (λB.A - B) (prop11 ?? (fun11 ?? (substract_is_morph S) A)))
292 (prop11 ?? (substract_is_morph S))
293 (*--------------------------------------------------------------------------*) ⊢
294 fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A - B.
296 nlemma substract_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A.
297 #A; napply (mk_binary_morphism1 … (substract_is_ext …));
298 #x1 x2 y1 y2 Ex Ey; napply (prop11 … (substract_is_morph A)); nassumption.
302 AA : setoid, B,C : 𝛀^AA;
304 T ≟ ext_powerclass_setoid AA,
305 R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA.
306 mk_unary_morphism1 ?? (λY:𝛀^AA.
308 (ext_carr ? X - ext_carr ? Y)
309 (ext_prop AA (substract_is_ext ? X Y)))
310 (prop11 ?? (fun11 ?? (substract_is_ext_morph AA) X)))
311 (prop11 ?? (substract_is_ext_morph AA)),
314 (*------------------------------------------------------*) ⊢
315 ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ substract A BB CC.
318 nlemma single_is_morph : ∀A:setoid. (setoid1_of_setoid A) ⇒_1 Ω^A.
319 #X; @; ##[ napply (λx.{(x)}); ##]
320 #a b E; napply ext_set; #x; @; #H; /3/; nqed.
322 nlemma single_is_ext: ∀A:setoid. A → 𝛀^A.
323 #X a; @; ##[ napply ({(a)}); ##] #x y E; @; #H; /3/; nqed.
325 alias symbol "hint_decl" = "hint_decl_Type1".
326 unification hint 0 ≔ A : setoid, a : carr A;
327 R ≟ (mk_ext_powerclass ? {(a)} (ext_prop ? (single_is_ext ? a)))
328 (*-------------------------------------------------------------------------*) ⊢
329 ext_carr A R ≡ singleton A a.
331 unification hint 0 ≔ A:setoid, a : carr A;
332 T ≟ setoid1_of_setoid A,
334 MM ≟ mk_unary_morphism1 ??
335 (λa:carr1 (setoid1_of_setoid A).{(a)}) (prop11 ?? (single_is_morph A))
336 (*--------------------------------------------------------------------------*) ⊢
337 fun11 T (powerclass_setoid AA) MM a ≡ {(a)}.
339 nlemma single_is_ext_morph:∀A:setoid.(setoid1_of_setoid A) ⇒_1 𝛀^A.
340 #A; @; ##[ #a; napply (single_is_ext ? a); ##] #a b E; @; #x; /3/; nqed.
342 unification hint 1 ≔ AA : setoid, a: carr AA;
343 T ≟ ext_powerclass_setoid AA,
344 R ≟ mk_unary_morphism1 ??
345 (λa:carr1 (setoid1_of_setoid AA).
346 mk_ext_powerclass AA {(a)} (ext_prop ? (single_is_ext AA a)))
347 (prop11 ?? (single_is_ext_morph AA))
348 (*------------------------------------------------------*) ⊢
349 ext_carr AA (fun11 (setoid1_of_setoid AA) T R a) ≡ singleton AA a.
353 alias symbol "hint_decl" = "hint_decl_Type2".
355 A : setoid, B,C : 𝛀^A ;
358 C1 ≟ (carr1 (powerclass_setoid (carr A))),
359 C2 ≟ (carr1 (ext_powerclass_setoid A))
361 eq_rel1 C1 (eq1 (powerclass_setoid (carr A))) BB CC ≡
362 eq_rel1 C2 (eq1 (ext_powerclass_setoid A)) B C.
365 A, B : CPROP ⊢ iff A B ≡ eq_rel1 ? (eq1 CPROP) A B.
367 nlemma test: ∀U.∀A,B:𝛀^U. A ∩ B = A →
368 ∀x,y. x=y → x ∈ A → y ∈ A ∩ B.
369 #U; #A; #B; #H; #x; #y; #K; #K2;
370 alias symbol "prop2" = "prop21 mem".
371 alias symbol "invert" = "setoid1 symmetry".
377 nlemma intersect_ok: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A).
382 nwhd in ⊢ (? ? ? % %); @; *; #H1; #H2; @
383 [##1,2: napply (. Ha^-1‡#); nassumption;
384 ##|##3,4: napply (. Ha‡#); nassumption]##]
385 ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; @; #x; nwhd in ⊢ (% → %); #H
386 [ alias symbol "invert" = "setoid1 symmetry".
387 alias symbol "refl" = "refl".
388 alias symbol "prop2" = "prop21".
389 napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption
390 | napply (. ((#‡Ha)‡(#‡Hb))); nassumption ]##]
393 (* unfold if intersect, exposing fun21 *)
394 alias symbol "hint_decl" = "hint_decl_Type1".
396 A : setoid, B,C : ext_powerclass A ⊢
398 (mk_binary_morphism1 …
399 (λS,S':qpowerclass_setoid A.mk_qpowerclass ? (S ∩ S') (mem_ok' ? (intersect_ok ? S S')))
400 (prop21 … (intersect_ok A)))
403 ≡ intersect ? (pc ? B) (pc ? C).
405 nlemma test: ∀A:setoid. ∀U,V:qpowerclass A. ∀x,x':setoid1_of_setoid A. x=x' → x ∈ U ∩ V → x' ∈ U ∩ V.
406 #A; #U; #V; #x; #x'; #H; #p; napply (. (H^-1‡#)); nassumption.
410 ndefinition image: ∀A,B. (carr A → carr B) → Ω^A → Ω^B ≝
411 λA,B:setoid.λf:carr A → carr B.λSa:Ω^A.
412 {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq0 B) (f x) y}.
414 ndefinition counter_image: ∀A,B. (carr A → carr B) → Ω^B → Ω^A ≝
415 λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}.
417 (******************* compatible equivalence relations **********************)
419 nrecord compatible_equivalence_relation (A: setoid) : Type[1] ≝
420 { rel:> equivalence_relation A;
421 compatibility: ∀x,x':A. x=x' → rel x x'
424 ndefinition quotient: ∀A. compatible_equivalence_relation A → setoid.
428 (******************* first omomorphism theorem for sets **********************)
430 ndefinition eqrel_of_morphism:
431 ∀A,B. A ⇒_0 B → compatible_equivalence_relation A.
433 [ @ [ napply (λx,y. f x = f y) ] /2/;
434 ##| #x; #x'; #H; nwhd; alias symbol "prop1" = "prop1".
435 napply (.= (†H)); // ]
438 ndefinition canonical_proj: ∀A,R. A ⇒_0 (quotient A R).
440 [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ]
443 ndefinition quotiented_mor:
444 ∀A,B.∀f:A ⇒_0 B.(quotient … (eqrel_of_morphism … f)) ⇒_0 B.
445 #A; #B; #f; @ [ napply f ] //.
448 nlemma first_omomorphism_theorem_functions1:
449 ∀A,B.∀f: unary_morphism A B.
450 ∀x. f x = quotiented_mor … (canonical_proj … (eqrel_of_morphism … f) x).
453 alias symbol "eq" = "setoid eq".
454 ndefinition surjective ≝
455 λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:A ⇒_0 B.
456 ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y.
458 ndefinition injective ≝
459 λA,B.λS: ext_powerclass A.λf:A ⇒_0 B.
460 ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'.
462 nlemma first_omomorphism_theorem_functions2:
464 surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)).
467 nlemma first_omomorphism_theorem_functions3:
469 injective … (Full_set ?) (quotiented_mor … f).
470 #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption.
473 nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) : Type[0] ≝
475 f_closed: ∀x. x ∈ S → iso_f x ∈ T;
476 f_sur: surjective … S T iso_f;
477 f_inj: injective … S iso_f
482 nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝
483 { iso_f:> unary_morphism A B;
484 f_closed: ∀x. x ∈ pc A S → fun1 ?? iso_f x ∈ pc B T}.
491 λxxx:isomorphism A B S T.
493 return λxxx:isomorphism A B S T.
495 ∀x_72: mem (carr A) (pc A S) x.
496 mem (carr B) (pc B T) (fun1 A B ((λ_.?) A B S T xxx) x)
497 with [ mk_isomorphism _ yyy ⇒ yyy ] ).
505 nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W.
506 #A; #U; #V; #W; *; #H; #x; *; /2/.
509 nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W.
510 #A; #U; #V; #W; #H; #H1; #x; *; /2/.
513 nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V.
516 nlemma cupC : ∀S. ∀a,b:Ω^S.a ∪ b = b ∪ a.
517 #S a b; @; #w; *; nnormalize; /2/; nqed.
519 nlemma cupID : ∀S. ∀a:Ω^S.a ∪ a = a.
520 #S a; @; #w; ##[*; //] /2/; nqed.
522 (* XXX Bug notazione \cup, niente parentesi *)
523 nlemma cupA : ∀S.∀a,b,c:Ω^S.a ∪ b ∪ c = a ∪ (b ∪ c).
524 #S a b c; @; #w; *; /3/; *; /3/; nqed.
526 ndefinition Empty_set : ∀A.Ω^A ≝ λA.{ x | False }.
528 notation "∅" non associative with precedence 90 for @{ 'empty }.
529 interpretation "empty set" 'empty = (Empty_set ?).
531 nlemma cup0 :∀S.∀A:Ω^S.A ∪ ∅ = A.
532 #S p; @; #w; ##[*; //| #; @1; //] *; nqed.