2 include "logic/equality.ma".
3 (* Inclusion of: BOO009-4.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : BOO009-4 : TPTP v3.1.1. Released v1.1.0. *)
6 (* Domain : Boolean Algebra *)
7 (* Problem : Multiplication absorption (X * (X + Y) = X) *)
8 (* Version : [Ver94] (equality) axioms. *)
10 (* Refs : [Ver94] Veroff (1994), Problem Set *)
11 (* Source : [Ver94] *)
12 (* Names : TC [Ver94] *)
13 (* Status : Unsatisfiable *)
14 (* Rating : 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.38 v2.0.0 *)
15 (* Syntax : Number of clauses : 9 ( 0 non-Horn; 9 unit; 1 RR) *)
16 (* Number of atoms : 9 ( 9 equality) *)
17 (* Maximal clause size : 1 ( 1 average) *)
18 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
19 (* Number of functors : 7 ( 4 constant; 0-2 arity) *)
20 (* Number of variables : 14 ( 0 singleton) *)
21 (* Maximal term depth : 3 ( 2 average) *)
23 (* -------------------------------------------------------------------------- *)
24 (* ----Include boolean algebra axioms for equality formulation *)
25 (* Inclusion of: Axioms/BOO004-0.ax *)
26 (* -------------------------------------------------------------------------- *)
27 (* File : BOO004-0 : TPTP v3.1.1. Released v1.0.0. *)
28 (* Domain : Boolean Algebra *)
29 (* Axioms : Boolean algebra (equality) axioms *)
30 (* Version : [Ver94] (equality) axioms. *)
32 (* Refs : [Ver94] Veroff (1994), Problem Set *)
33 (* Source : [Ver94] *)
36 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
37 (* Number of literals : 8 ( 8 equality) *)
38 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
40 (* Number of functors : 5 ( 2 constant; 0-2 arity) *)
41 (* Number of variables : 14 ( 0 singleton) *)
42 (* Maximal term depth : 3 ( 2 average) *)
44 (* -------------------------------------------------------------------------- *)
45 (* -------------------------------------------------------------------------- *)
46 (* -------------------------------------------------------------------------- *)
47 theorem prove_operation:
50 \forall add:\forall _:Univ.\forall _:Univ.Univ.
51 \forall additive_identity:Univ.
53 \forall inverse:\forall _:Univ.Univ.
54 \forall multiplicative_identity:Univ.
55 \forall multiply:\forall _:Univ.\forall _:Univ.Univ.
56 \forall H0:\forall X:Univ.eq Univ (multiply X (inverse X)) additive_identity.
57 \forall H1:\forall X:Univ.eq Univ (add X (inverse X)) multiplicative_identity.
58 \forall H2:\forall X:Univ.eq Univ (multiply X multiplicative_identity) X.
59 \forall H3:\forall X:Univ.eq Univ (add X additive_identity) X.
60 \forall H4:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
61 \forall H5:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
62 \forall H6:\forall X:Univ.\forall Y:Univ.eq Univ (multiply X Y) (multiply Y X).
63 \forall H7:\forall X:Univ.\forall Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (add a b)) a
66 autobatch paramodulation timeout=100;
70 (* -------------------------------------------------------------------------- *)