2 include "logic/equality.ma".
3 (* Inclusion of: COL060-3.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : COL060-3 : TPTP v3.1.1. Bugfixed v1.2.0. *)
6 (* Domain : Combinatory Logic *)
7 (* Problem : Find combinator equivalent to Q from B and T *)
8 (* Version : [WM88] (equality) axioms. *)
9 (* Theorem formulation : The combinator is provided and checked. *)
10 (* English : Construct from B and T alone a combinator that behaves as the *)
11 (* combinator Q does, where ((Bx)y)z = x(yz), (Tx)y = yx, *)
12 (* ((Qx)y)z = y(xz). *)
13 (* Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
14 (* : [WW+90] Wos et al. (1990), Automated Reasoning Contributes to *)
17 (* Status : Unsatisfiable *)
18 (* Rating : 0.00 v2.1.0, 0.29 v2.0.0 *)
19 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
20 (* Number of atoms : 3 ( 3 equality) *)
21 (* Maximal clause size : 1 ( 1 average) *)
22 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
23 (* Number of functors : 6 ( 5 constant; 0-2 arity) *)
24 (* Number of variables : 5 ( 0 singleton) *)
25 (* Maximal term depth : 9 ( 4 average) *)
27 (* Bugfixes : v1.2.0 : Redundant [fgh]_substitution axioms removed. *)
28 (* -------------------------------------------------------------------------- *)
29 (* ----This is the q equivalent *)
30 theorem prove_q_combinator:
32 \forall apply:\forall _:Univ.\forall _:Univ.Univ.
38 \forall H0:\forall X:Univ.\forall Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
39 \forall H1:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t b)) b)) t) x) y) z) (apply y (apply x z))
42 autobatch paramodulation timeout=100;
46 (* -------------------------------------------------------------------------- *)