2 include "logic/equality.ma".
3 (* Inclusion of: GRP162-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : GRP162-1 : TPTP v3.1.1. Bugfixed v1.2.1. *)
6 (* Domain : Group Theory (Lattice Ordered) *)
7 (* Problem : Prove transitivity axiom using the LUB transformation *)
8 (* Version : [Fuc94] (equality) axioms. *)
9 (* English : This problem proves the original transitivity axiom from the *)
10 (* equational axiomatization. *)
11 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
12 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
13 (* Source : [Sch95] *)
14 (* Names : ax_transa [Sch95] *)
15 (* Status : Unsatisfiable *)
16 (* Rating : 0.00 v2.0.0 *)
17 (* Syntax : Number of clauses : 18 ( 0 non-Horn; 18 unit; 3 RR) *)
18 (* Number of atoms : 18 ( 18 equality) *)
19 (* Maximal clause size : 1 ( 1 average) *)
20 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
21 (* Number of functors : 8 ( 4 constant; 0-2 arity) *)
22 (* Number of variables : 33 ( 2 singleton) *)
23 (* Maximal term depth : 3 ( 2 average) *)
24 (* Comments : ORDERING LPO inverse > product > greatest_lower_bound > *)
25 (* least_upper_bound > identity > a > b > c *)
26 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
27 (* -------------------------------------------------------------------------- *)
28 (* ----Include equality group theory axioms *)
29 (* Inclusion of: Axioms/GRP004-0.ax *)
30 (* -------------------------------------------------------------------------- *)
31 (* File : GRP004-0 : TPTP v3.1.1. Released v1.0.0. *)
32 (* Domain : Group Theory *)
33 (* Axioms : Group theory (equality) axioms *)
34 (* Version : [MOW76] (equality) axioms : *)
35 (* Reduced > Complete. *)
37 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
38 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
42 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
43 (* Number of literals : 3 ( 3 equality) *)
44 (* Maximal clause size : 1 ( 1 average) *)
45 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
46 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
47 (* Number of variables : 5 ( 0 singleton) *)
48 (* Maximal term depth : 3 ( 2 average) *)
49 (* Comments : [MOW76] also contains redundant right_identity and *)
50 (* right_inverse axioms. *)
51 (* : These axioms are also used in [Wos88] p.186, also with *)
52 (* right_identity and right_inverse. *)
53 (* -------------------------------------------------------------------------- *)
54 (* ----For any x and y in the group x*y is also in the group. No clause *)
55 (* ----is needed here since this is an instance of reflexivity *)
56 (* ----There exists an identity element *)
57 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
59 (* ----The operation '*' is associative *)
60 (* -------------------------------------------------------------------------- *)
61 (* ----Include Lattice ordered group (equality) axioms *)
62 (* Inclusion of: Axioms/GRP004-2.ax *)
63 (* -------------------------------------------------------------------------- *)
64 (* File : GRP004-2 : TPTP v3.1.1. Bugfixed v1.2.0. *)
65 (* Domain : Group Theory (Lattice Ordered) *)
66 (* Axioms : Lattice ordered group (equality) axioms *)
67 (* Version : [Fuc94] (equality) axioms. *)
69 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
70 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
71 (* Source : [Sch95] *)
74 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
75 (* Number of literals : 12 ( 12 equality) *)
76 (* Maximal clause size : 1 ( 1 average) *)
77 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
78 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
79 (* Number of variables : 28 ( 2 singleton) *)
80 (* Maximal term depth : 3 ( 2 average) *)
81 (* Comments : Requires GRP004-0.ax *)
82 (* -------------------------------------------------------------------------- *)
83 (* ----Specification of the least upper bound and greatest lower bound *)
84 (* ----Monotony of multiply *)
85 (* -------------------------------------------------------------------------- *)
86 (* -------------------------------------------------------------------------- *)
87 theorem prove_ax_transa:
92 \forall greatest_lower_bound:\forall _:Univ.\forall _:Univ.Univ.
93 \forall identity:Univ.
94 \forall inverse:\forall _:Univ.Univ.
95 \forall least_upper_bound:\forall _:Univ.\forall _:Univ.Univ.
96 \forall multiply:\forall _:Univ.\forall _:Univ.Univ.
97 \forall H0:eq Univ (least_upper_bound b c) c.
98 \forall H1:eq Univ (least_upper_bound a b) b.
99 \forall H2:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
100 \forall H3:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
101 \forall H4:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
102 \forall H5:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
103 \forall H6:\forall X:Univ.\forall Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
104 \forall H7:\forall X:Univ.\forall Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
105 \forall H8:\forall X:Univ.eq Univ (greatest_lower_bound X X) X.
106 \forall H9:\forall X:Univ.eq Univ (least_upper_bound X X) X.
107 \forall H10:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
108 \forall H11:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
109 \forall H12:\forall X:Univ.\forall Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
110 \forall H13:\forall X:Univ.\forall Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
111 \forall H14:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
112 \forall H15:\forall X:Univ.eq Univ (multiply (inverse X) X) identity.
113 \forall H16:\forall X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a c) c
116 autobatch paramodulation timeout=100;
120 (* -------------------------------------------------------------------------- *)