2 include "logic/equality.ma".
3 (* Inclusion of: GRP182-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : GRP182-1 : TPTP v3.1.1. Bugfixed v1.2.1. *)
6 (* Domain : Group Theory (Lattice Ordered) *)
7 (* Problem : Positive part of the negative part is identity *)
8 (* Version : [Fuc94] (equality) axioms. *)
10 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
11 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
12 (* : [Dah95] Dahn (1995), Email to G. Sutcliffe *)
15 (* Status : Unsatisfiable *)
16 (* Rating : 0.00 v2.0.0 *)
17 (* Syntax : Number of clauses : 16 ( 0 non-Horn; 16 unit; 1 RR) *)
18 (* Number of atoms : 16 ( 16 equality) *)
19 (* Maximal clause size : 1 ( 1 average) *)
20 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
21 (* Number of functors : 6 ( 2 constant; 0-2 arity) *)
22 (* Number of variables : 33 ( 2 singleton) *)
23 (* Maximal term depth : 3 ( 2 average) *)
24 (* Comments : ORDERING LPO inverse > product > greatest_lower_bound > *)
25 (* least_upper_bound > identity > a *)
26 (* : ORDERING LPO greatest_lower_bound > least_upper_bound > *)
27 (* inverse > product > identity > a *)
28 (* : This is a standardized version of the problem that appears in *)
30 (* : The theorem clause has been modified according to instructions *)
32 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
33 (* -------------------------------------------------------------------------- *)
34 (* ----Include equality group theory axioms *)
35 (* Inclusion of: Axioms/GRP004-0.ax *)
36 (* -------------------------------------------------------------------------- *)
37 (* File : GRP004-0 : TPTP v3.1.1. Released v1.0.0. *)
38 (* Domain : Group Theory *)
39 (* Axioms : Group theory (equality) axioms *)
40 (* Version : [MOW76] (equality) axioms : *)
41 (* Reduced > Complete. *)
43 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
44 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
48 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
49 (* Number of literals : 3 ( 3 equality) *)
50 (* Maximal clause size : 1 ( 1 average) *)
51 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
52 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
53 (* Number of variables : 5 ( 0 singleton) *)
54 (* Maximal term depth : 3 ( 2 average) *)
55 (* Comments : [MOW76] also contains redundant right_identity and *)
56 (* right_inverse axioms. *)
57 (* : These axioms are also used in [Wos88] p.186, also with *)
58 (* right_identity and right_inverse. *)
59 (* -------------------------------------------------------------------------- *)
60 (* ----For any x and y in the group x*y is also in the group. No clause *)
61 (* ----is needed here since this is an instance of reflexivity *)
62 (* ----There exists an identity element *)
63 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
65 (* ----The operation '*' is associative *)
66 (* -------------------------------------------------------------------------- *)
67 (* ----Include Lattice ordered group (equality) axioms *)
68 (* Inclusion of: Axioms/GRP004-2.ax *)
69 (* -------------------------------------------------------------------------- *)
70 (* File : GRP004-2 : TPTP v3.1.1. Bugfixed v1.2.0. *)
71 (* Domain : Group Theory (Lattice Ordered) *)
72 (* Axioms : Lattice ordered group (equality) axioms *)
73 (* Version : [Fuc94] (equality) axioms. *)
75 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
76 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
77 (* Source : [Sch95] *)
80 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
81 (* Number of literals : 12 ( 12 equality) *)
82 (* Maximal clause size : 1 ( 1 average) *)
83 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
84 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
85 (* Number of variables : 28 ( 2 singleton) *)
86 (* Maximal term depth : 3 ( 2 average) *)
87 (* Comments : Requires GRP004-0.ax *)
88 (* -------------------------------------------------------------------------- *)
89 (* ----Specification of the least upper bound and greatest lower bound *)
90 (* ----Monotony of multiply *)
91 (* -------------------------------------------------------------------------- *)
92 (* -------------------------------------------------------------------------- *)
93 (* ----This is Schulz's clause *)
94 (* input_clause(prove_p17a,negated_conjecture, *)
95 (* [--equal(least_upper_bound(identity,least_upper_bound(a,identity)), *)
96 (* least_upper_bound(a,identity))]). *)
97 (* ----This is Dahn's clause *)
101 \forall greatest_lower_bound:\forall _:Univ.\forall _:Univ.Univ.
102 \forall identity:Univ.
103 \forall inverse:\forall _:Univ.Univ.
104 \forall least_upper_bound:\forall _:Univ.\forall _:Univ.Univ.
105 \forall multiply:\forall _:Univ.\forall _:Univ.Univ.
106 \forall H0:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
107 \forall H1:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
108 \forall H2:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
109 \forall H3:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
110 \forall H4:\forall X:Univ.\forall Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
111 \forall H5:\forall X:Univ.\forall Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
112 \forall H6:\forall X:Univ.eq Univ (greatest_lower_bound X X) X.
113 \forall H7:\forall X:Univ.eq Univ (least_upper_bound X X) X.
114 \forall H8:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
115 \forall H9:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
116 \forall H10:\forall X:Univ.\forall Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
117 \forall H11:\forall X:Univ.\forall Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
118 \forall H12:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
119 \forall H13:\forall X:Univ.eq Univ (multiply (inverse X) X) identity.
120 \forall H14:\forall X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (greatest_lower_bound a identity)) identity
123 autobatch paramodulation timeout=100;
127 (* -------------------------------------------------------------------------- *)