2 include "logic/equality.ma".
3 (* Inclusion of: GRP606-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : GRP606-1 : TPTP v3.1.1. Released v2.6.0. *)
6 (* Domain : Group Theory (Abelian) *)
7 (* Problem : Axiom for Abelian group theory, in double div and inv, part 2 *)
8 (* Version : [McC93] (equality) axioms. *)
10 (* Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr *)
13 (* Status : Unsatisfiable *)
14 (* Rating : 0.00 v2.6.0 *)
15 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
16 (* Number of atoms : 3 ( 3 equality) *)
17 (* Maximal clause size : 1 ( 1 average) *)
18 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
19 (* Number of functors : 5 ( 2 constant; 0-2 arity) *)
20 (* Number of variables : 5 ( 0 singleton) *)
21 (* Maximal term depth : 7 ( 3 average) *)
22 (* Comments : A UEQ part of GRP109-1 *)
23 (* -------------------------------------------------------------------------- *)
24 theorem prove_these_axioms_2:
28 \forall double_divide:\forall _:Univ.\forall _:Univ.Univ.
29 \forall inverse:\forall _:Univ.Univ.
30 \forall multiply:\forall _:Univ.\forall _:Univ.Univ.
31 \forall H0:\forall A:Univ.\forall B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
32 \forall H1:\forall A:Univ.\forall B:Univ.\forall C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
35 autobatch paramodulation timeout=100;
39 (* -------------------------------------------------------------------------- *)