2 include "logic/equality.ma".
3 (* Inclusion of: LCL134-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : LCL134-1 : TPTP v3.1.1. Released v1.0.0. *)
6 (* Domain : Logic Calculi (Wajsberg Algebra) *)
7 (* Problem : A lemma in Wajsberg algebras *)
8 (* Version : [Bon91] (equality) axioms. *)
10 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
11 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
12 (* Source : [Bon91] *)
13 (* Names : Lemma 3 [Bon91] *)
14 (* Status : Unsatisfiable *)
15 (* Rating : 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.25 v2.0.0 *)
16 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR) *)
17 (* Number of atoms : 5 ( 5 equality) *)
18 (* Maximal clause size : 1 ( 1 average) *)
19 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
20 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
21 (* Number of variables : 8 ( 0 singleton) *)
22 (* Maximal term depth : 4 ( 2 average) *)
24 (* -------------------------------------------------------------------------- *)
25 (* ----Include Wajsberg algebra axioms *)
26 (* Inclusion of: Axioms/LCL001-0.ax *)
27 (* -------------------------------------------------------------------------- *)
28 (* File : LCL001-0 : TPTP v3.1.1. Released v1.0.0. *)
29 (* Domain : Logic Calculi (Wajsberg Algebras) *)
30 (* Axioms : Wajsberg algebra axioms *)
31 (* Version : [Bon91] (equality) axioms. *)
33 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
34 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
35 (* : [MW92] McCune & Wos (1992), Experiments in Automated Deductio *)
37 (* Names : MV Sentential Calculus [MW92] *)
39 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 0 RR) *)
40 (* Number of literals : 4 ( 4 equality) *)
41 (* Maximal clause size : 1 ( 1 average) *)
42 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
43 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
44 (* Number of variables : 8 ( 0 singleton) *)
45 (* Maximal term depth : 4 ( 2 average) *)
47 (* -------------------------------------------------------------------------- *)
48 (* -------------------------------------------------------------------------- *)
49 (* -------------------------------------------------------------------------- *)
50 theorem prove_wajsberg_lemma:
52 \forall implies:\forall _:Univ.\forall _:Univ.Univ.
53 \forall not:\forall _:Univ.Univ.
56 \forall H0:\forall X:Univ.\forall Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
57 \forall H1:\forall X:Univ.\forall Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
58 \forall H2:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
59 \forall H3:\forall X:Univ.eq Univ (implies truth X) X.eq Univ (implies x truth) truth
62 autobatch paramodulation timeout=100;
66 (* -------------------------------------------------------------------------- *)