1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "logic/equality.ma".
18 universe constraint Type[0] < Type[1].
19 universe constraint Type[1] < Type[2].
20 universe constraint CProp[0] < CProp[1].
21 universe constraint Type[0] ≤ CProp[0].
22 universe constraint CProp[0] ≤ Type[0].
23 universe constraint Type[1] ≤ CProp[1].
24 universe constraint CProp[1] ≤ Type[1].
26 ninductive A : Type[0] ≝
30 nlet rec A_rect (Q_:∀x_3:A.Type[0]) H_K H_W x_3 on x_3 :Q_ x_3≝
31 match x_3 with [K x_4⇒H_K x_4|W x_5⇒H_W x_5].
33 nlemma yy : ∀x,y. K x = W y → False.
36 (match K x return λ_.Prop with [ K _ ⇒ False | W _ ⇒ True]);
37 nrewrite > H; nwhd; napply I;
40 nlemma xx : ∀x,y. K x = K y → x = y.
43 (match K x return λ_.Prop with [ K a ⇒ a = y | W b ⇒ b = y]);
44 nrewrite > H; nwhd; napply (refl_eq ??);
49 nlemma ww : ∀a,b:A. a = b → P.