1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
17 inductive nat : Set \def
21 inductive eq (A:Set): A \to A \to Prop \def
22 refl: \forall x:A.eq A x x.
24 inductive list (A:Set) : Set \def
26 | cons : A \to list A \to list A.
28 let rec list_len (A:Set) (l:list A) on l \def
31 | (cons a tl) \Rightarrow S (list_len A tl)].
33 theorem stupid: \forall A:Set.eq ? (list_len A (nil ?)) O.