1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* test _with_ the WHD on the apply argument *)
16 set "baseuri" "cic:/matita/tests/apply/".
17 include "legacy/coq.ma".
19 alias id "not" = "cic:/Coq/Init/Logic/not.con".
20 alias id "False" = "cic:/Coq/Init/Logic/False.ind#xpointer(1/1)".
24 (not x) \to x \to False.
30 (* test _without_ the WHD on the apply argument *)
32 alias symbol "eq" (instance 0) = "Coq's leibnitz's equality".
37 not (x=x) \to not (x=x).
43 (* this test shows what happens when a term of type A -> ? is applied to
44 a goal of type A' -> B: if A unifies with A' the unifier becomes ? := B
45 and no goal is opened; otherwise the unifier becomes ? := A' -> B and a
46 new goal of type A is created. *)
49 A \to (\forall P: Prop. A \to P) \to (A \to B) \land (B \to B).
50 intros 4; split; [ apply H1 | apply H1; exact H ].
53 (* this test requires the delta-expansion of not in the type of the applied
54 term (to reveal a product) *)
55 theorem d: \forall A: Prop. \lnot A \to A \to False.
56 intros. apply H. assumption.