1 set "baseuri" "cic:/matita/TPTP/BOO075-1".
3 inductive eq (A:Type) (x:A) : A \to Prop \def refl_eq : eq A x x.
5 theorem sym_eq : \forall A:Type.\forall x,y:A. eq A x y \to eq A y x.
6 intros.elim H. apply refl_eq.
10 \forall A:Type.\forall x:A. \forall P: A \to Prop.
11 P x \to \forall y:A. eq A y x \to P y.
12 intros. elim (sym_eq ? ? ? H1).assumption.
16 \forall A:Type.\forall x,y,z:A. eq A x y \to eq A y z \to eq A x z.
17 intros.elim H1.assumption.
21 cic:/matita/TPTP/BOO075-1/eq.ind
22 cic:/matita/TPTP/BOO075-1/sym_eq.con
23 cic:/matita/TPTP/BOO075-1/trans_eq.con
24 cic:/matita/TPTP/BOO075-1/eq_ind.con
25 cic:/matita/TPTP/BOO075-1/eq_elim_r.con
26 cic:/matita/TPTP/BOO075-1/eq_f.con
27 cic:/matita/TPTP/BOO075-1/eq_f1.con.
29 theorem eq_f: \forall A,B:Type.\forall f:A\to B.
30 \forall x,y:A. eq A x y \to eq B (f x) (f y).
31 intros.elim H.reflexivity.
34 theorem eq_f1: \forall A,B:Type.\forall f:A\to B.
35 \forall x,y:A. eq A x y \to eq B (f y) (f x).
36 intros.elim H.reflexivity.
39 inductive ex (A:Type) (P:A \to Prop) : Prop \def
40 ex_intro: \forall x:A. P x \to ex A P.
41 interpretation "exists" 'exists \eta.x =
42 (cic:/matita/TPTP/BOO075-1/ex.ind#xpointer(1/1) _ x).
44 notation < "hvbox(\exists ident i opt (: ty) break . p)"
45 right associative with precedence 20
46 for @{ 'exists ${default
47 @{\lambda ${ident i} : $ty. $p)}
48 @{\lambda ${ident i} . $p}}}.
51 (* Inclusion of: BOO075-1.p *)
52 (* -------------------------------------------------------------------------- *)
53 (* File : BOO075-1 : TPTP v3.1.1. Released v2.6.0. *)
54 (* Domain : Boolean Algebra *)
55 (* Problem : Sh-1 is a single axiom for Boolean algebra, part 1 *)
56 (* Version : [EF+02] axioms. *)
58 (* Refs : [EF+02] Ernst et al. (2002), More First-order Test Problems in *)
59 (* : [MV+02] McCune et al. (2002), Short Single Axioms for Boolean *)
62 (* Status : Unsatisfiable *)
63 (* Rating : 0.00 v2.6.0 *)
64 (* Syntax : Number of clauses : 2 ( 0 non-Horn; 2 unit; 1 RR) *)
65 (* Number of atoms : 2 ( 2 equality) *)
66 (* Maximal clause size : 1 ( 1 average) *)
67 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
68 (* Number of functors : 3 ( 2 constant; 0-2 arity) *)
69 (* Number of variables : 3 ( 1 singleton) *)
70 (* Maximal term depth : 5 ( 2 average) *)
71 (* Comments : A UEQ part of BOO039-1 *)
72 (* -------------------------------------------------------------------------- *)
73 theorem prove_meredith_2_basis_1:
77 \forall nand:Univ\rarr Univ\rarr Univ.
78 \forall H0:\forall A:Univ.\forall B:Univ.\forall C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
81 auto paramodulation timeout=600.
85 (* -------------------------------------------------------------------------- *)