1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/test/paramodulation/group".
17 include "legacy/coq.ma".
19 alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
20 alias id "eq" = "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1)".
21 alias id "eq_ind" = "cic:/Coq/Init/Logic/eq_ind.con".
22 alias id "eq_ind_r" = "cic:/Coq/Init/Logic/eq_ind_r.con".
23 alias id "sym_eq" = "cic:/Coq/Init/Logic/sym_eq.con".
29 \forall H:(\forall x,y:A. x = y).
30 \forall H:(\forall x,y,z:A. f x = y).
32 intros.auto paramodulation.
35 theorem GRP049_simple:
38 \forall mult: A \to A \to A.
39 \forall H: (\forall x,y,z:A.mult z (inv (mult (inv (mult (inv (mult z y)) x)) (inv (mult y (mult (inv y) y))))) = x).
40 \forall a,b:A. mult (inv a) a = mult (inv b) b.
41 intros.auto paramodulation; exact a.
47 \forall mult: A \to A \to A.
48 \forall H: (\forall x,y,z:A.mult z (inv (mult (inv (mult (inv (mult z y)) x)) (inv (mult y (mult (inv y) y))))) = x).
49 \forall a,b:A. mult a (inv a)= mult b (inv b).
50 intros.auto paramodulation.